全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2014 

A Type VI Secretion System Is Involved in Pseudomonas fluorescens Bacterial Competition

DOI: 10.1371/journal.pone.0089411

Full-Text   Cite this paper   Add to My Lib

Abstract:

Protein secretion systems are crucial mediators of bacterial interactions with other organisms. Among them, the type VI secretion system (T6SS) is widespread in Gram-negative bacteria and appears to inject toxins into competitor bacteria and/or eukaryotic cells. Major human pathogens, such as Vibrio cholerae, Burkholderia and Pseudomonas aeruginosa, express T6SSs. Bacteria prevent self-intoxication by their own T6SS toxins by producing immunity proteins, which interact with the cognate toxins. We describe here an environmental P. fluorescens strain, MFE01, displaying an uncommon oversecretion of Hcp (hemolysin-coregulated protein) and VgrG (valine-glycine repeat protein G) into the culture medium. These proteins are characteristic components of a functional T6SS. The aim of this study was to attribute a role to this energy-consuming overexpression of the T6SS. The genome of MFE01 contains at least two hcp genes (hcp1 and hcp2), suggesting that there may be two putative T6SS clusters. Phenotypic studies have shown that MFE01 is avirulent against various eukaryotic cell models (amebas, plant or animal cell models), but has antibacterial activity against a wide range of competitor bacteria, including rhizobacteria and clinical bacteria. Depending on the prey cell, mutagenesis of the hcp2 gene in MFE01 abolishes or reduces this antibacterial killing activity. Moreover, the introduction of T6SS immunity proteins from S. marcescens, which is not killed by MFE01, protects E. coli against MFE01 killing. These findings suggest that the protein encoded by hcp2 is involved in the killing activity of MFE01 mediated by effectors of the T6SS targeting the peptidoglycan of Gram-negative bacteria. Our results indicate that MFE01 can protect potato tubers against Pectobacterium atrosepticum, which causes tuber soft rot. Pseudomonas fluorescens is often described as a major PGPR (plant growth-promoting rhizobacterium), and our results suggest that there may be a connection between the T6SS and the PGPR properties of this bacterium.

References

[1]  Pukatzki S, Ma AT, Sturtevant D, Krastins B, Sarracino D, et al. (2006) Identification of a conserved bacterial protein secretion system in Vibrio cholerae using the Dictyostelium host model system. Proc Natl Acad Sci U S A 103: 1528–1533. doi: 10.1073/pnas.0510322103
[2]  Mougous JD, Gifford CA, Ramsdell TL, Mekalanos JJ (2007) Threonine phosphorylation post-translationally regulates protein secretion in Pseudomonas aeruginosa. Nat Cell Biol 9: 797–803. doi: 10.1038/ncb1605
[3]  Gerlach RG, Hensel M (2007) Protein secretion systems and adhesins: the molecular armory of Gram-negative pathogens. Int J Med Microbiol 297: 401–415. doi: 10.1016/j.ijmm.2007.03.017
[4]  Boyer F, Fichant G, Berthod J, Vandenbrouck Y, Attree I (2009) Dissecting the bacterial type VI secretion system by a genome wide in silico analysis: what can be learned from available microbial genomic resources? BMC Genomics 10: 104. doi: 10.1186/1471-2164-10-104
[5]  Zheng J, Leung KY (2007) Dissection of a type VI secretion system in Edwardsiella tarda. Mol Microbiol 66: 1192–1206. doi: 10.1111/j.1365-2958.2007.05993.x
[6]  Bingle LE, Bailey CM, Pallen MJ (2008) Type VI secretion: a beginner’s guide. Curr Opin Microbiol 11: 3–8. doi: 10.1016/j.mib.2008.01.006
[7]  Pukatzki S, McAuley SB, Miyata ST (2009) The type VI secretion system: translocation of effectors and effector-domains. Curr Opin Microbiol 12: 11–17. doi: 10.1016/j.mib.2008.11.010
[8]  Pell LG, Kanelis V, Donaldson LW, Howell PL, Davidson AR (2009) The phage lambda major tail protein structure reveals a common evolution for long-tailed phages and the type VI bacterial secretion system. Proc Natl Acad Sci U S A 106: 4160–4165. doi: 10.1073/pnas.0900044106
[9]  Leiman PG, Basler M, Ramagopal UA, Bonanno JB, Sauder JM, et al. (2009) Type VI secretion apparatus and phage tail-associated protein complexes share a common evolutionary origin. Proc Natl Acad Sci U S A 106: 4154–4159. doi: 10.1073/pnas.0813360106
[10]  Schwarz S, Hood RD, Mougous JD (2010) What is type VI secretion doing in all those bugs? Trends Microbiol 18: 531–537. doi: 10.1016/j.tim.2010.09.001
[11]  Ma AT, McAuley S, Pukatzki S, Mekalanos JJ (2009) Translocation of a Vibrio cholerae type VI secretion effector requires bacterial endocytosis by host cells. Cell Host Microbe 5: 234–243. doi: 10.1016/j.chom.2009.02.005
[12]  Burtnick MN, Brett PJ, Harding SV, Ngugi SA, Ribot WJ, et al. (2011) The cluster 1 type VI secretion system is a major virulence determinant in Burkholderia pseudomallei.. Infect Immun 79: 1512–1525. doi: 10.1128/iai.01218-10
[13]  Cascales E (2008) The type VI secretion toolkit. EMBO Rep 9: 735–741. doi: 10.1038/embor.2008.131
[14]  Carruthers MD, Nicholson PA, Tracy EN, Munson RS Jr (2013) Acinetobacter baumannii utilizes a type VI secretion system for bacterial competition. PLoS One 8: e59388. doi: 10.1371/journal.pone.0059388
[15]  Jani AJ, Cotter PA (2010) Type VI secretion: not just for pathogenesis anymore. Cell Host Microbe 8: 2–6. doi: 10.1016/j.chom.2010.06.012
[16]  Schwarz S, West TE, Boyer F, Chiang WC, Carl MA, et al. (2010) Burkholderia type VI secretion systems have distinct roles in eukaryotic and bacterial cell interactions. PLoS Pathog 6: e1001068. doi: 10.1371/journal.ppat.1001068
[17]  Hood RD, Singh P, Hsu F, Guvener T, Carl MA, et al. (2010) A type VI secretion system of Pseudomonas aeruginosa targets a toxin to bacteria. Cell Host Microbe 7: 25–37. doi: 10.1016/j.chom.2009.12.007
[18]  MacIntyre DL, Miyata ST, Kitaoka M, Pukatzki S (2010) The Vibrio cholerae type VI secretion system displays antimicrobial properties. Proc Natl Acad Sci U S A 107: 19520–19524. doi: 10.1073/pnas.1012931107
[19]  Chou S, Bui NK, Russell AB, Lexa KW, Gardiner TE, et al. (2012) Structure of a peptidoglycan amidase effector targeted to Gram-negative bacteria by the type VI secretion system. Cell Rep 1: 656–664. doi: 10.1016/j.celrep.2012.05.016
[20]  English G, Trunk K, Rao VA, Srikannathasan V, Hunter WN, et al. (2012) New secreted toxins and immunity proteins encoded within the Type VI secretion system gene cluster of Serratia marcescens. Mol Microbiol 86: 921–936. doi: 10.1111/mmi.12028
[21]  Zhang H, Gao ZQ, Wang WJ, Liu GF, Xu JH, et al. (2013) Structure of the type VI effector-immunity complex (Tae4-Tai4) provides novel insights into the inhibition mechanism of the effector by its immunity protein. J Biol Chem 288: 5928–5939. doi: 10.1074/jbc.m112.434357
[22]  Russell AB, LeRoux M, Hathazi K, Agnello DM, Ishikawa T, et al. (2013) Diverse type VI secretion phospholipases are functionally plastic antibacterial effectors. Nature 496: 508–512. doi: 10.1038/nature12074
[23]  Fritsch MJ, Trunk K, Diniz JA, Guo M, Trost M, et al. (2013) Proteomic identification of novel secreted antibacterial toxins of the Serratia marcescens type VI secretion system. Mol Cell Proteomics 12: 2735–2749. doi: 10.1074/mcp.m113.030502
[24]  Dong TG, Ho BT, Yoder-Himes DR, Mekalanos JJ (2013) Identification of T6SS-dependent effector and immunity proteins by Tn-seq in Vibrio cholerae. Proc Natl Acad Sci U S A 110: 2623–2628. doi: 10.1073/pnas.1222783110
[25]  Russell AB, Singh P, Brittnacher M, Bui NK, Hood RD, et al. (2012) A widespread bacterial type VI secretion effector superfamily identified using a heuristic approach. Cell Host Microbe 11: 538–549. doi: 10.1016/j.chom.2012.04.007
[26]  Murdoch SL, Trunk K, English G, Fritsch MJ, Pourkarimi E, et al. (2011) The opportunistic pathogen Serratia marcescens utilizes type VI secretion to target bacterial competitors. J Bacteriol 193: 6057–6069. doi: 10.1128/jb.05671-11
[27]  Barret M, Egan F, O’Gara F (2013) Distribution and diversity of bacterial secretion systems across metagenomic datasets. Environ Microbiol Rep 5: 117–126. doi: 10.1111/j.1758-2229.2012.00394.x
[28]  Shrivastava S, Mande SS (2008) Identification and functional characterization of gene components of Type VI Secretion system in bacterial genomes. PLoS One 3: e2955. doi: 10.1371/journal.pone.0002955
[29]  Barret M, Egan F, Fargier E, Morrissey JP, O’Gara F (2011) Genomic analysis of the type VI secretion systems in Pseudomonas spp.: novel clusters and putative effectors uncovered. Microbiology 157: 1726–1739. doi: 10.1099/mic.0.048645-0
[30]  Smadja B, Latour X, Faure D, Chevalier S, Dessaux Y, et al. (2004) Involvement of N-acylhomoserine lactones throughout plant infection by Erwinia carotovora subsp. atroseptica (Pectobacterium atrosepticum). Mol Plant Microbe Interact 17: 1269–1278. doi: 10.1094/mpmi.2004.17.11.1269
[31]  Barbey C, Crepin A, Cirou A, Budin-Verneuil A, Orange N, et al. (2012) Catabolic pathway of gamma-caprolactone in the biocontrol agent Rhodococcus erythropolis. J Proteome Res 11: 206–216. doi: 10.1021/pr200936q
[32]  Tan MW, Mahajan-Miklos S, Ausubel FM (1999) Killing of Caenorhabditis elegans by Pseudomonas aeruginosa used to model mammalian bacterial pathogenesis. Proc Natl Acad Sci U S A 96: 715–720. doi: 10.1073/pnas.96.2.715
[33]  Davey ME, Caiazza NC, O’Toole GA (2003) Rhamnolipid surfactant production affects biofilm architecture in Pseudomonas aeruginosa PAO1. J Bacteriol 185: 1027–1036. doi: 10.1128/jb.185.3.1027-1036.2003
[34]  Maurhofer M, Reimmann C, Schmidli-Sacherer P, Heeb S, Haas D, et al. (1998) Salicylic Acid Biosynthetic Genes Expressed in Pseudomonas fluorescens Strain P3 Improve the Induction of Systemic Resistance in Tobacco Against Tobacco Necrosis Virus. Phytopathology 88: 678–684. doi: 10.1094/phyto.1998.88.7.678
[35]  Chapalain A, Rossignol G, Lesouhaitier O, Merieau A, Gruffaz C, et al. (2008) Comparative study of 7 fluorescent pseudomonad clinical isolates. Can J Microbiol 54: 19–27. doi: 10.1139/w07-110
[36]  Picot L, Chevalier S, Mezghani-Abdelmoula S, Merieau A, Lesouhaitier O, et al. (2003) Cytotoxic effects of the lipopolysaccharide from Pseudomonas fluorescens on neurons and glial cells. Microb Pathog 35: 95–106. doi: 10.1016/s0882-4010(03)00092-5
[37]  Hancock RE, Carey AM (1979) Outer membrane of Pseudomonas aeruginosa: heat- 2-mercaptoethanol-modifiable proteins. J Bacteriol 140: 902–910.
[38]  Sperandio D, Decoin V, Latour X, Mijouin L, Hillion M, et al. (2012) Virulence of the Pseudomonas fluorescens clinical strain MFN1032 towards Dictyostelium discoideum and macrophages in relation with type III secretion system. BMC Microbiol 12: 223. doi: 10.1186/1471-2180-12-223
[39]  Crepin A, Barbey C, Beury-Cirou A, Helias V, Taupin L, et al. (2012) Quorum sensing signaling molecules produced by reference and emerging soft-rot bacteria (Dickeya and Pectobacterium spp.). PLoS One 7: e35176. doi: 10.1371/journal.pone.0035176
[40]  Guyard-Nicodeme M, Bazire A, Hemery G, Meylheuc T, Molle D, et al. (2008) Outer membrane modifications of Pseudomonas fluorescens MF37 in response to hyperosmolarity. J Proteome Res 7: 1218–1225. doi: 10.1021/pr070539x
[41]  El-Sayed AK, Hothersall J, Thomas CM (2001) Quorum-sensing-dependent regulation of biosynthesis of the polyketide antibiotic mupirocin in Pseudomonas fluorescens NCIMB 10586. Microbiology 147: 2127–2139.
[42]  Simon RPU, Pehle A (1983) A broad host range mobilization system for in vitro genetic engineering: transposon mutagenesis in Gram-negative bacteria. Biotechology 1: 784–790. doi: 10.1038/nbt1183-784
[43]  Compeau G, Al-Achi BJ, Platsouka E, Levy SB (1988) Survival of rifampin-resistant mutants of Pseudomonas fluorescens and Pseudomonas putida in soil systems. Appl Environ Microbiol 54: 2432–2438.
[44]  Lesic B, Starkey M, He J, Hazan R, Rahme LG (2009) Quorum sensing differentially regulates Pseudomonas aeruginosa type VI secretion locus I and homologous loci II and III, which are required for pathogenesis. Microbiology 155: 2845–2855. doi: 10.1099/mic.0.029082-0
[45]  Heeb S, Blumer C, Haas D (2002) Regulatory RNA as mediator in GacA/RsmA-dependent global control of exoproduct formation in Pseudomonas fluorescens CHA0. J Bacteriol 184: 1046–1056. doi: 10.1128/jb.184.4.1046-1056.2002
[46]  Dagley S, Dawes EA, Morrison GA (1950) Inhibition of growth of Aerobacter aerogenes; the mode of action of phenols, alcohols, acetone, and ethyl acetate. J Bacteriol 60: 369–379.
[47]  Silverman JM, Brunet YR, Cascales E, Mougous JD (2012) Structure and regulation of the type VI secretion system. Annu Rev Microbiol 66: 453–472. doi: 10.1146/annurev-micro-121809-151619
[48]  Mougous JD, Cuff ME, Raunser S, Shen A, Zhou M, et al. (2006) A virulence locus of Pseudomonas aeruginosa encodes a protein secretion apparatus. Science 312: 1526–1530. doi: 10.1126/science.1128393
[49]  Rietsch A, Vallet-Gely I, Dove SL, Mekalanos JJ (2005) ExsE, a secreted regulator of type III secretion genes in Pseudomonas aeruginosa. Proc Natl Acad Sci U S A 102: 8006–8011. doi: 10.1073/pnas.0503005102
[50]  Basler M, Ho BT, Mekalanos JJ (2013) Tit-for-tat: type VI secretion system counterattack during bacterial cell-cell interactions. Cell 152: 884–894. doi: 10.1016/j.cell.2013.01.042
[51]  Unterweger D, Kitaoka M, Miyata ST, Bachmann V, Brooks TM, et al. (2012) Constitutive type VI secretion system expression gives Vibrio cholerae intra- and interspecific competitive advantages. PLoS One 7: e48320. doi: 10.1371/journal.pone.0048320
[52]  Weller DM (2007) Pseudomonas biocontrol agents of soilborne pathogens: looking back over 30 years. Phytopathology 97: 250–256. doi: 10.1094/phyto-97-2-0250

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133