全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Controlled On-Chip Single-Photon Transfer Using Photonic Crystal Coupled-Cavity Waveguides

DOI: 10.1155/2011/893086

Full-Text   Cite this paper   Add to My Lib

Abstract:

To the end of realizing a quantum network on-chip, single photons must be guided consistently to their proper destination both on demand and without alteration to the information they carry. Coupled cavity waveguides are anticipated to play a significant role in this regard for two important reasons. First, these structures can easily be included within fully quantum-mechanical models using the phenomenological description of the tight-binding Hamiltonian, which is simply written down in the basis of creation and annihilation operators that move photons from one quasimode to another. This allows for a deeper understanding of the underlying physics and the identification and characterization of features that are truly critical to the behavior of the quantum network using only a few parameters. Second, their unique dispersive properties together with the careful engineering of the dynamic coupling between nearest neighbor cavities provide the necessary control for high-efficiency single-photon on-chip transfer. In this publication, we report transfer efficiencies in the upwards of 93% with respect to a fully quantum-mechanical approach and unprecedented 77% in terms of transferring the energy density contained in a classical quasibound mode from one cavity to another. 1. Introduction In order to obtain an efficient quantum computing architecture, the general consensus is that various implementations of the qubit should be combined. This calls on the one hand for stationary qubits that are good for storage, such as atoms to be used at quantum network nodes, and on the other hand for flying qubits that have desirable properties for travel, such as photons to be used as quantum interconnects. Moreover, the storage qubits can map their quantum state onto the traveling qubits and vice versa by means of coherent interfaces [1–3]. With the intention of realizing an efficient quantum computing architecture, this composite qubit approach to a quantum technology has been proposed for ion trap qubits [4] and also for neutral atoms [5]. We, in addition, have proposed a similar approach in connection with semiconductor-based artificial atoms or quantum dots [6]. Regardless of choice, these various implementations of the composite qubit architecture are only possible if single photons are able to be guided from one node to another with both high efficiency and fidelity. Recently, the on-chip generation and transfer of microwave single photons have been demonstrated in connection with superconducting qubits via transmission line cavities [7–10]. In addition, the

References

[1]  B. B. Blinov, D. L. Moehring, L. M. Duan, and C. Monroe, “Observation of entanglement between a single trapped atom and a single photon,” Nature, vol. 428, no. 6979, pp. 153–157, 2004.
[2]  W. Yao, R. B. Liu, and L. J. Sham, “Theory of control of the spin-photon interface for quantum networks,” Physical Review Letters, vol. 95, no. 3, Article ID 030504, 4 pages, 2005.
[3]  W. Yao, R. B. Liu, and L. J. Sham, “Theory of control of the dynamics of the interface between stationary and flying qubits,” Journal of Optics B, vol. 7, no. 10, pp. S318–S325, 2005.
[4]  D. L. Moehring, M. J. Madsen, K. C. Younge et al., “Quantum networking with photons and trapped atoms (invited),” Journal of the Optical Society of America B, vol. 24, no. 2, pp. 300–315, 2007.
[5]  T. Wilk, S. C. Webster, A. Kuhn, and G. Rempe, “Single-atom single-photon quantum interface,” Science, vol. 317, no. 5837, pp. 488–490, 2007.
[6]  M. N. Leuenberger, M. E. Flatté, and D. D. Awschalom, “Teleportation of electronic many-qubit states encoded in the electron spin of quantum dots via single photons,” Physical Review Letters, vol. 94, no. 10, Article ID 107401, 2005.
[7]  A. A. Houck, D. I. Schuster, J. M. Gambetta et al., “Generating single microwave photons in a circuit,” Nature, vol. 449, no. 7160, pp. 328–331, 2007.
[8]  J. Majer, J. M. Chow, J. M. Gambetta et al., “Coupling superconducting qubits via a cavity bus,” Nature, vol. 449, no. 7161, pp. 443–447, 2007.
[9]  D. I. Schuster, A. A. Houck, J. A. Schreier et al., “Resolving photon number states in a superconducting circuit,” Nature, vol. 445, no. 7127, pp. 515–518, 2007.
[10]  M. A. Sillanp??, J. I. Park, and R. W. Simmonds, “Coherent quantum state storage and transfer between two phase qubits via a resonant cavity,” Nature, vol. 449, no. 7161, pp. 438–442, 2007.
[11]  D. England, A. Faraon, B. Zhang, Y. Yamamoto, and J. Vuckovic, “Generation and transfer of single photons on a photonic crystal chip,” Optics Express, vol. 15, no. 9, pp. 5550–5558, 2007.
[12]  J. Q. Liao, Z. R. Gong, L. Zhou, YU. X. Liu, C. P. Sun, and F. Nori, “Controlling the transport of single photons by tuning the frequency of either one or two cavities in an array of coupled cavities,” Physical Review A, vol. 81, no. 4, Article ID 042304, 2010.
[13]  P. Chak, J. E. Sipe, and S. Pereira, “Hamiltonian formulation for light propagation in waveguide-microresonator structures,” in Proceedings of the Postconference on Quantum electronics and Laser Science (QELS '03), Trends in Optics and Photonics Series, pp. QTuL6/1–QTuL6/3, June 2003.
[14]  A. Adibi, R. K. Lee, Y. Xu, A. Yariv, and A. Scherer, “Design of photonic crystal optical waveguides with singlemode propagation in the photonic bandgap,” Electronics Letters, vol. 36, no. 16, pp. 1376–1378, 2000.
[15]  M. Bayindir and E. Ozbay, “Heavy photons at coupled-cavity waveguide band edges in a three-dimensional photonic crystal,” Physical Review B, vol. 62, no. 4, pp. R2247–R2250, 2000.
[16]  M. Bayindir, B. Temelkuran, and E. Ozbay, “Propagation of photons by hopping: a waveguiding mechanism through localized coupled cavities in three-dimensional photonic crystals,” Physical Review B, vol. 61, no. 18, pp. R11855–R11858, 2000.
[17]  M. Bayindir, B. Temelkuran, and E. Ozbay, “Tight-binding description of the coupled defect modes in three-dimensional photonic crystals,” Physical Review Letters, vol. 84, no. 10, pp. 2140–2143, 2000.
[18]  Y. Xu, R. K. Lee, and A. Yariv, “Propagation and second-harmonic generation of electromagnetic waves in a coupled-resonator optical waveguide,” Journal of the Optical Society of America B, vol. 17, no. 3, pp. 387–400, 2000.
[19]  S. Mookherjea, “Dispersion characteristics of coupled-resonator optical waveguides,” Optics Letters, vol. 30, no. 18, pp. 2406–2408, 2005.
[20]  H. P. Seigneur, G. Gonzalez, M. N. Leuenberger, and W. V. Schoenfeld, “Dynamics of entanglement between a quantum dot spin qubit and a photon qubit inside a semiconductor high-Q nanocavity,” Advances in Mathematical Physics. In press.
[21]  D. Press, K. De Greve, P. L. McMahon et al., “Ultrafast optical spin echo in a single quantum dot,” Nature Photonics, vol. 4, pp. 367–370, 2010.
[22]  Y. Tanaka, J. Upham, T. Nagashima, T. Sugiya, T. Asano, and S. Noda, “Dynamic control of the Q factor in a photonic crystal nanocavity,” Nature Materials, vol. 6, no. 11, pp. 862–865, 2007.
[23]  S. F. Preble, Q. Xu, and M. Lipson, “Changing the colour of light in a silicon resonator,” Nature Photonics, vol. 1, no. 5, pp. 293–296, 2007.
[24]  PO. Dong, L. Chen, Q. Xu, and M. Lipson, “On-chip generation of high-intensity short optical pulses using dynamic microcavities,” Optics Letters, vol. 34, no. 15, pp. 2315–2317, 2009.
[25]  T. Tanabe, M. Notomi, H. Taniyama, and E. Kuramochi, “Dynamic release of trapped light from an ultrahigh-Q nanocavity via adiabatic frequency tuning,” Physical Review Letters, vol. 102, no. 4, Article ID 043907, 2009.
[26]  F. Y. Gardes, G. T. Reed, N. G. Emerson, and C. E. Png, “A sub-micron depletion-type photonic modulator in silicon on insulator,” Optics Express, vol. 13, no. 22, pp. 8845–8854, 2005.
[27]  T. J. Karle, Y. J. Chai, C. N. Morgan, I. H. White, and T. F. Krauss, “Observation of pulse compression in photonic crystal coupled cavity waveguides,” Journal of Lightwave Technology, vol. 22, no. 2, pp. 514–519, 2004.
[28]  J. Hou, H. Wu, D. S. Citrin, W. Mo, D. Gao, and Z. Zhou, “Wideband slow light in chirped slot photoniccrystal coupled waveguides,” Optics Express, vol. 18, no. 10, pp. 10567–10580, 2010.
[29]  D. O'Brien, M. D. Settle, T. Karle, A. Michaeli, M. Salib, and T. F. Krauss, “Coupled photonic crystal heterostructure nanocavities,” Optics Express, vol. 15, no. 3, pp. 1228–1233, 2007.
[30]  J. Jagerska, N. Le Thomas, V. Zabelin et al., “Experimental observation of slow mode dispersion in photonic crystal coupled-cavity waveguides,” Optics Letters, vol. 34, no. 3, pp. 359–361, 2009.
[31]  A. Faraon, E. Waks, D. Englund, I. Fushman, and J. Vuckovic, “Efficient photonic crystal cavity-waveguide couplers,” Applied Physics Letters, vol. 90, no. 7, Article ID 073102, 2007.
[32]  P. Yao and S. Hughes, “Controlled cavity QED and single-photon emission using a photonic-crystal waveguide cavity system,” Physical Review B, vol. 80, no. 16, Article ID 165128, 2009.
[33]  Y. Huang and Y. W. Lu, “A defect effect to light transmission through acute bending coupled cavity waveguide in a two-dimensional photonic crystal,” Chinese Physics Letters, vol. 26, no. 4, Article ID 047805, 2009.
[34]  E. Ozbay, M. Bayindir, I. Bulu, and E. Cubukcu, “Investigation of localized coupled-cavity modes in two-dimensional photonic bandgap structures,” IEEE Journal of Quantum Electronics, vol. 38, no. 7, pp. 837–843, 2002.
[35]  Y. Wang, T. Wang, and J. Liu, “Waveguide modes in coupled-resonator optical waveguides,” Physics Letters A, vol. 353, no. 1, pp. 101–104, 2006.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133