[1] | Fahy JV, Dickey BF (2010) Airway mucus function and dysfunction. New England Journal of Medicine 363: 2233–2247. doi: 10.1056/nejmra0910061
|
[2] | Potter JL, Matthews LW, Spector S, Lemm J (1967) Studies of pulmonary secretions. II. Osmolarity and the ionic environment of pulmonary secretions from patients with cystic fibrosis, bronchiectasis and laryngectomy. American Review of Respiratory Disease 96: 83–87.
|
[3] | Matthews LW, Spector S, Lemm J, Potter JL (1963) Studies on Pulmonary Secretions. I. The over-All Chemical Composition of Pulmonary Secretions from Patients with Cystic Fibrosis, Bronchiectasis, and Laryngectomy. Am Rev Respir Dis 88: 199–204.
|
[4] | Boucher RC (2003) Regulation of airway surface liquid volume by human airway epithelia. Pfluegers Archiv 445: 495–498.
|
[5] | Jeffery PK (1998) Structural and inflammatory changes in COPD: a comparison with asthma. Thorax 53: 129–136. doi: 10.1136/thx.53.2.129
|
[6] | Mall MA, Harkema JR, Trojanek JB, Treis D, Livraghi A, et al. (2008) Development of chronic bronchitis and emphysema in beta-epithelial Na+ channel-overexpressing mice. American Journal of Respiratory and Critical Care Medicine 177: 730–742. doi: 10.1164/rccm.200708-1233oc
|
[7] | Livraghi-Butrico A, Kelly EJ, Klem ER, Dang H, Wolfgang MC, et al. (2012) Mucus clearance, MyD88-dependent and MyD88-independent immunity modulate lung susceptibility to spontaneous bacterial infection and inflammation. Mucosal Immunol 5: 397–408. doi: 10.1038/mi.2012.17
|
[8] | Bansil R, Stanley E, LaMont JT (1995) Mucin biophysics. Annu Rev Physiol 57: 635–657. doi: 10.1146/annurev.ph.57.030195.003223
|
[9] | Quraishi MS, Jones NS, Mason J (1998) The rheology of nasal mucus: a review. Clinical Otolaryngology 23: 403–413. doi: 10.1046/j.1365-2273.1998.00172.x
|
[10] | Thornton DJ, Howard M, Khan N, Sheehan JK (1997) Identification of two glycoforms of the MUC5B mucin in human respiratory mucus - Evidence for a cysteine-rich sequence repeated within the molecule. Journal of Biological Chemistry 272: 9561–9566. doi: 10.1074/jbc.272.14.9561
|
[11] | Silberberg A, Meyer FA (1982) Structure and function of mucus. Adv Exp Med Biol 144: 53–74. doi: 10.1007/978-1-4615-9254-9_6
|
[12] | Roberts GP (1976) The role of disulfide bonds in maintaining the gel structure of bronchial mucus. Arch Biochem Biophys 173: 528–537. doi: 10.1016/0003-9861(76)90289-7
|
[13] | Kater A, Henke MO, Rubin BK (2007) The role of DNA and actin polymers on the polymer structure and rheology of cystic fibrosis sputum and depolymerization by gelsolin or thymosin beta 4. In: Goldstein AL, Garaci E, editors; pp. 140–153.
|
[14] | Rubin BK (2007) Mucus structure and properties in cystic fibrosis. Paediatric Respiratory Reviews 8: 4–7. doi: 10.1016/j.prrv.2007.02.004
|
[15] | Sackner MA, Kim CS (1987) Phasic flow mechanisms of mucus clearance. Eur J Respir Dis Suppl 153: 159–164.
|
[16] | Mason TG (2000) Estimating the viscoelastic moduli of complex fluids using the generalized Stokes-Einstein equation. Rheologica Acta 39: 371–378. doi: 10.1007/s003970000094
|
[17] | Mason TG, Weitz DA (1995) Optical measurements of frequency-dependent linear viscoelastic moduli of complex fluids. Phys Rev Lett 74: 1250–1253. doi: 10.1103/physrevlett.74.1250
|
[18] | Matsui H, Wagner VE, Hill DB, Schwab UE, Rogers TD, et al. (2006) A physical linkage between CF airway surface dehydration and P. aeruginosa biofilms. Proceedings of the National Academy of Sciences of the USA 103: 18131–18136. doi: 10.1073/pnas.0606428103
|
[19] | Matsui H, Verghese MW, Kesimer M, Schwab UE, Randell SH, et al. (2005) Reduced 3-dimensional motility in dehydrated airway mucus prevents neutrophil capture and killing bacteria on airway epithelial surfaces. Journal of Immunology 175: 1090–1099. doi: 10.4049/jimmunol.175.2.1090
|
[20] | Kesimer M, Kirkham S, Pickles RJ, Henderson AG, Alexis NE, et al. (2009) Tracheobronchial air-liquid interface cell culture: a model for innate mucosal defense of the upper airways? Am J Physiol Lung Cell Mol Physiol 296: L92–L100. doi: 10.1152/ajplung.90388.2008
|
[21] | Hill DB, Button B (2012) Establishment of Respiratory Air-Liquid Interface Cultures and their Use in Studying Mucin Production, Secretion, and Function. In: Thornton DJ, editor. Mucins: Springer.
|
[22] | Button B, Cai LH, Ehre C, Kesimer M, Hill DB, et al. (2012) A periciliary brush promotes the lung health by separating the mucus layer from airway epithelia. Science 337: 937–941. doi: 10.1126/science.1223012
|
[23] | Georgiades P, Pudney PD, Thornton DJ, Waigh T (2013) Particle tracking microrheology of purified gastrointestinal mucins. Biopolymers doi: 10.1002/bip.22372
|
[24] | Lai SK, Wang YY, Wirtz D, Hanes J (2009) Micro- and macrorheology of mucus. Advanced Drug Delivery Reviews 61: 86–100. doi: 10.1016/j.addr.2008.09.012
|
[25] | Waigh TA (2005) Microrheology of complex fluids. Rep Prog Phys 68. doi: 10.1088/0034-4885/68/3/r04
|
[26] | Yakubov GE, Papagiannopoulos A, Rat E, Easton RL, Waigh TA (2007) Molecular structure and rheological properties of short-side-chain heavily glycosylated porcine stomach mucin. Biomacromolecules 8: 3467–3477. doi: 10.1021/bm700607w
|
[27] | Pin I, Gibson PG, Kolendowicz R, Girgis-Gabardo A, Denburg JA, et al. (1992) Use of induced sputum cell counts to investigate airway inflammation in asthma. Thorax 47: 25–29. doi: 10.1136/thx.47.1.25
|
[28] | Loughlin CE, Esther CR Jr, Lazarowski ER, Alexis NE, Peden DB (2010) Neutrophilic inflammation is associated with altered airway hydration in stable asthmatics. Respir Med 104: 29–33. doi: 10.1016/j.rmed.2009.07.002
|
[29] | Fulcher ML, Gabriel S, Burns KA, Yankaskas JR, Randell SH (2005) Well-differentiated human airway epithelial cell cultures. Methods Mol Med 107: 183–206. doi: 10.1385/1-59259-861-7:183
|
[30] | Cone RA (2009) Barrier properties of mucus. Advanced Drug Delivery Reviews 61: 75–85. doi: 10.1016/j.addr.2008.09.008
|
[31] | Lai SK, O'Hanlon DE, Harrold S, Man ST, Wang YY, et al. (2007) Rapid transport of large polymeric nanoparticles in fresh undiluted human mucus. Proceedings of the National Academy of Sciences of the United States of America 104: 1482–1487. doi: 10.1073/pnas.0608611104
|
[32] | Dawson M, Wirtz D, Hanes J (2003) Enhanced viscoelasticity of human cystic fibrotic sputum correlates with increasing microheterogeneity in particle transport. Journal of Biological Chemistry 278: 50393–50401. doi: 10.1074/jbc.m309026200
|
[33] | Schuster BS, Suk JS, Woodworth GF, Hanes J (2013) Nanoparticle diffusion in respiratory mucus from humans without lung disease. Biomaterials 34: 3439–3446. doi: 10.1016/j.biomaterials.2013.01.064
|
[34] | Savin T, Doyle PS (2005) Static and dynamic errors in particle tracking microrheology. Biophys J 88: 623–638. doi: 10.1529/biophysj.104.042457
|
[35] | Weber SC, Spakowitz AJ, Theriot JA (2010) Bacterial chromosomal loci move subdiffusively through a viscoelastic cytoplasm. Phys Rev Lett 104: 238102. doi: 10.1103/physrevlett.104.238102
|
[36] | Larsen TH, Furst EM (2008) Microrheology of the liquid-solid transition during gelation. Physical Review Letters 100. doi: 10.1103/physrevlett.100.146001
|
[37] | Deng W, Barkai E (2009) Ergodic properties of fractional Brownian-Langevin motion. Phys Rev E Stat Nonlin Soft Matter Phys 79: 011112. doi: 10.1103/physreve.79.011112
|
[38] | Magdziarz M, Klafter J (2010) Detecting origins of subdiffusion: P-variation test for confined systems. Phys Rev E Stat Nonlin Soft Matter Phys 82: 011129. doi: 10.1103/physreve.82.011129
|
[39] | Ernst D, Hellmann M, Kohler J, Weiss M (2012) Fractional Brownian motion in crowded fluids. Soft Matter 8: 4886–4889. doi: 10.1039/c2sm25220a
|
[40] | Kirch J, Schneider A, Abou B, Hopf A, Schaefer UF, et al. (2012) Optical tweezers reveal relationship between microstructure and nanoparticle penetration of pulmonary mucus. Proc Natl Acad Sci U S A 109: 18355–18360. doi: 10.1073/pnas.1214066109
|
[41] | O'Malley D, Cushman JH, Johnson G (2011) Scaling laws for fractional Brownian motion with power-law clock. Journal of Statistical Mechanics-Theory and Experiment doi: 10.1088/1742-5468/2011/01/l01001
|
[42] | Winter HH (1987) Can the Gel Point of a Cross-Linking Polymer Be Detected by the G′ - G″ Crossover. Polymer Engineering and Science 27: 1698–1702. doi: 10.1002/pen.760272209
|
[43] | Mason TG, Ganesan K, vanZanten JH, Wirtz D, Kuo SC (1997) Particle tracking microrheology of complex fluids. Physical Review Letters 79: 3282–3285. doi: 10.1103/physrevlett.79.3282
|
[44] | MacKintosh FC, Schmidt CF (1999) Microrheology. Curr Opin Colloid 4: 8. doi: 10.1016/s1359-0294(99)90010-9
|
[45] | Didier G, McKinley SA, Hill DB, Fricks J (2012) Statistical challenges in microrheology. J Time Ser Anal 33: 724–743. doi: 10.1111/j.1467-9892.2012.00792.x
|
[46] | Tam PY, Katz DF, Berger SA (1980) Non-linear viscoelastic properties of cervical mucus. Biorheology 17: 465–478.
|
[47] | Tam PY, Verdugo P (1981) Control of Mucus Hydration as a Donnan Equilibrium Process. Nature 292: 340–342. doi: 10.1038/292340a0
|
[48] | Bhat PG, Flanagan DR, Donovan MD (1996) Drug diffusion through cystic fibrotic mucus: Steady-state permeation, rheologic properties, and glycoprotein morphology. Journal of Pharmaceutical Sciences 85: 624–630. doi: 10.1021/js950381s
|
[49] | Lai SK, Wang YY, Cone R, Wirtz D, Hanes J (2009) Altering Mucus Rheology to “Solidify” Human Mucus at the Nanoscale. Plos One 4. doi: 10.1371/journal.pone.0004294
|
[50] | Saito DM, Innes AL, Pletcher SD (2010) Rheologic properties of sinonasal mucus in patients with chronic sinusitis. American Journal of Rhinology & Allergy 24: 1–5. doi: 10.2500/ajra.2010.24.3420
|
[51] | Celli JP, Turner BS, Afdhal NH, Ewoldt RH, McKinley GH, et al. (2007) Rheology of gastric mucin exhibits a pH-dependent sol-gel transition. Biomacromolecules 8: 1580–1586. doi: 10.1021/bm0609691
|
[52] | Macierzanka A, Rigby NM, Corfield AP, Wellner N, Bottger F, et al. (2011) Adsorption of bile salts to particles allows penetration of intestinal mucus. Soft Matter 7: 8077–8084. doi: 10.1039/c1sm05888f
|
[53] | Puchelle E, Zahm JM (1984) Influence of rheological properties of human bronchial secretions on the ciliary beat frequency. Biorheology 21: 265–272.
|
[54] | Clunes LA, Davies CM, Coakley RD, Aleksandrov AA, Henderson AG, et al. (2012) Cigarette smoke exposure induces CFTR internalization and insolubility, leading to airway surface liquid dehydration. FASEB J 26: 533–545. doi: 10.1096/fj.11-192377
|