全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2014 

Are Temperate Canopy Spiders Tree-Species Specific?

DOI: 10.1371/journal.pone.0086571

Full-Text   Cite this paper   Add to My Lib

Abstract:

Arboreal spiders in deciduous and coniferous trees were investigated on their distribution and diversity. Insecticidal knock-down was used to comprehensively sample spiders from 175 trees from 2001 to 2003 in the Bia?owie?a forest and three remote forests in Poland. We identified 140 species from 9273 adult spiders. Spider communities were distinguished between deciduous and coniferous trees. The richest fauna was collected from Quercus where beta diversity was also highest. A tree-species-specific pattern was clearly observed for Alnus, Carpinus, Picea and Pinus trees and also for those tree species that were fogged in only four or three replicates, namely Betula and Populus. This hitherto unrecognised association was mainly due to the community composition of common species identified in a Dufrene-Legendre indicator species analysis. It was not caused by spatial or temporal autocorrelation. Explaining tree-species specificity for generalist predators like spiders is difficult and has to involve physical and ecological tree parameters like linkage with the abundance of prey species. However, neither did we find a consistent correlation of prey group abundances with spiders nor could differences in spider guild composition explain the observed pattern. Our results hint towards the importance of deterministic mechanisms structuring communities of generalist canopy spiders although the casual relationship is not yet understood.

References

[1]  Schmidt JM, Rypstra AL (2010) Opportunistic predator prefers habitat complexity that exposes prey while reducing cannibalism and intraguild encounters. Oecologia 164: 899–910. doi: 10.1007/s00442-010-1785-z
[2]  Cardoso P, Pekár S, Jocqué R, Coddington JA (2011) Global patterns of guild composition and functional diversity of spiders. PLoS ONE 6: e21710. doi: 10.1371/journal.pone.0021710
[3]  Prieto-Benítez S, Méndez M (2011) Effects of land management on the abundance and 307 richness of spiders (Araneae): A meta-analysis. Biol Conserv 144: 683–691. doi: 10.1016/j.biocon.2010.11.024
[4]  Schmidt JM, Sebastian P, Wilder SM, Rypstra AL (2012) The nutritional content of prey affects the foraging of a generalist arthropod predator. PLoS ONE 7: e49223. doi: 10.1371/journal.pone.0049223
[5]  Floren A, Otto S, Linsenmair KE (2008) Do spider communities in primary forests differ from those in forest-plantations? A canopy study in the Bia?owie?a Forest (Poland). In: Floren A, Schmidl J, editors, Canopy arthropod research in Europe, Nuremberg: Bioform Entomology. pp. 489–506.
[6]  Copley CR, Winchester NN (2010) Effect of disturbance and distance from a riparian corridor on spiders in a temperate rainforest. Can J For Res 40: 904–916. doi: 10.1139/x10-043
[7]  Wise DH (1993) Spiders in Ecological Webs. Melbourne: Cambridge University Press, 328 pp.
[8]  Halaj J, Ross DW, Moldenke AR (2000) Importance of habitat structure to the arthropod food-web in douglas-fir canopies. Oikos 90: 139–152. doi: 10.1034/j.1600-0706.2000.900114.x
[9]  Ziesche TM, Roth M (2008) Influence of environmental parameters on small-scale distribution of soil-dwelling spiders in forests: What makes the difference, tree species or microhabitat? For Ecol Manage 255: 738–752. doi: 10.1016/j.foreco.2007.09.060
[10]  Nicolai V (1993) The arthropod fauna on the bark of deciduous and coniferous trees in a mixed forest of the Itasca State Park, MN, USA. Spixiana 16: 61–69.
[11]  Halaj J, Ross DW, Moldenke AR (1998) Habitat structure and prey availability as predictors of the abundance and community organization of spiders in western oregon forest canopies. J Arachnol 26: 203–220.
[12]  Ludy C (2007) Prey selection of orb-web spiders (Araneidae) on field margins. Agric Ecosyst Environ 119: 368–372. doi: 10.1016/j.agee.2006.08.005
[13]  Mestre L, Lubin Y (2011) Settling where the food is: prey abundance promotes colony formation and increases group size in a web-building spider. Anim Behav 81: 741–748. doi: 10.1016/j.anbehav.2011.01.002
[14]  S?rensen LL (2004) Composition and diversity of the spider fauna in the canopy of a montane forest in Tanzania. Biodivers Conserv 13: 437–452. doi: 10.1023/b:bioc.0000006510.49496.1e
[15]  Floren A (2010) Sampling arthropods from the canopy by insecticidal knockdown. 333 In: Eymann J, Degref J, H?user C, Monje JC, Samyn Y, et al.., editors, Manual on Field Recording Techniques and Protocols for All Taxa Biodiversity Inventories, ABC Taxa (Part 1). pp. 158–172.
[16]  Hsieh YL, Linsenmair KE (2011) Underestimated spider diversity in a temperate beech forest. Biodivers Conserv 20: 2953–2965. doi: 10.1007/s10531-011-0158-1
[17]  J?drzejewska B, J?drzejewski W (1998) Abiotic conditions and habitats. In: Jedrzejewska B, Jedrzejewski W, editors, Ecological Studies; Predation in vertebrate communities: The Bia?owie?a primeval forest as a case study, Berlin: Springer-Verlag. pp. 4–27.
[18]  Falinski J (1986) Vegetation dynamics in temperate lowland primeval forests. Dr. W. Junk Publishers, Dordrecht, 538 pp.
[19]  Br?ndle M, Brandl R (2001) Species richness of insects and mites on trees: expanding Southwood. J Anim Ecol 70: 491–504. doi: 10.1046/j.1365-2656.2001.00506.x
[20]  Floren A (2008) Abundance and ordinal composition of arboreal arthropod communities of various trees in old primary and managed forests. In: Floren A, Schmidl J, editors, Canopy arthropod research in Europe, Nuremberg: Bioform Entomology. pp. 279–298.
[21]  Uetz GW, Halaj J, Cady AB (1999) Guild structure of spiders in major crops. J Arachnol 27: 270–280.
[22]  Nentwig W (1985) Prey analysis of 4 species of tropical orb-weaving spiders (Araneae, Araneidae) and a comparison with araneids of the temperate zone. Oecologia 66: 580–594. doi: 10.1007/bf00379353
[23]  Nyffeler M (1999) Prey selection of spiders in the field. J Arachnol 27: 317–324.
[24]  R Core Team (2012) R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria.
[25]  Pateiro-López B, Rodríguez-Casal A (2009) Alphahull: Generalization of the convex hull of a sample of points in the plane. R package version 0.2-0.
[26]  Oksanen J, Blanchet FG, Kindt R, Legendre P, Minchin PR, et al.. (2012) Vegan: Community ecology package. R package version 2.0-4.
[27]  Roberts DW (2012) Labdsv: Ordination and multivariate analysis for ecology. Available: http://CRAN.R-project.org/package=labdsv. R package version 1.5-0.
[28]  Borcard D, Gillet F, Legendre P (2011) Unconstrained ordination. In: Gentleman R, Hornik K, Parmigiani GG, editors, Numerical Ecology with R, Use R, Nuremberg: Springer Science+Business Media. pp. 115–152.
[29]  Platen R, Broen B, Herrmann A, Ratschker U, Sacher U (1999) Gesamtartenliste und Rote Liste der Webspinnen, Weberknechte und Pseudoskorpione (Araneae, Opiliones, Pseudoscorpiones) mit Angaben zur H?ufigkeit und ?kologie. Naturschutz und Landschaftspflege Brandenburg 8: Suppl.: 1–79.
[30]  Dufrene M, Legendre P (1997) Species assemblages and indicator species: The need for a flexible asymmetrical approach. Ecol Monogr 67: 345–366. doi: 10.2307/2963459
[31]  Magurran AE (2004) Measuring biological diversity. Oxford: Blackwell, 2 edition, 264 pp.
[32]  Jost L (2009) Mismeasuring biological diversity: Response to Hoffmann and Hoffmann (2008). Ecol Econ 68: 925–928. doi: 10.1016/j.ecolecon.2008.10.015
[33]  Legendre P, Legendre L (1998) Numerical Ecology. Amsterdam: Elsevier Science, 2 edition.
[34]  Blick T, Bosmans R, Buchar J, Gajdo? P, H?nggi A, et al. (2004) Checklist of the spiders of Central Europe (Arachnida: Araneae). Arachnologische Gesellschaft
[35]  Southwood TRE, Moran VC, Kennedy CEE (1982) The assessment of arboreal insect fauna: comparisons of knockdown sampling and faunal lists. Ecological Entomology 7: 331–340. doi: 10.1111/j.1365-2311.1982.tb00674.x
[36]  Finch OD, Blick T, Schuldt A (2008) Macroecological patterns of spider species richness across europe. Biodiversity and Conservation 17: 2849–2868. doi: 10.1007/s10531-008-9400-x
[37]  Blick T, Otto S, Fritzen NR, Floren A (2006) Theridion palmgreni marusik & tsellarius, 1986: first record for poland, new data from finland, russia and estonia - with a review of distribution and ecology (araneae, theridiidae). Fragmenta Faunistica (Warsaw) 49: 115–126.
[38]  Otto S, Floren A (2007) The spider fauna (Araneae) of tree canopies in the Bia?owie?a Forest. Fragm Faun 50: 57–70.
[39]  Pinzón J, Spence JR, Langor DW (2011) Spider assemblages in the overstory, understory and ground layers of managed stands in the western boreal mixedwood forest of canada. Environ Entomol 797–808. doi: 10.1603/en11081
[40]  Horstmann K, Floren A (2008) Ichneumonidae (Hymenoptera) from the canopies of primary forests and forest plantations in eastern Poland and southern Germany. In: Floren A, Schmidl J, editors, Canopy arthropod research in Europe, Nuremberg: Bioform entomology. pp. 469–488.
[41]  Sprick P, Floren A (2008) Species richness and historical relations in arboreal phytophagous beetles: a study based on fogging samples from primeval forests of poland, romania and slovenia (coleoptera: Chrysomelidae, curculionoidea). In: Floren A, Schmidl J, editors, Canopy arthropod research in Europe, Nuremberg: Bioform Entomology. pp. 225–259.
[42]  Larrivée M, Buddle CM (2009) Diversity of canopy and understorey spiders in northtemperate hardwood forests. Agric For Entomol 11: 225–237. doi: 10.1111/j.1461-9563.2008.00421.x
[43]  Jennings DT, Collins JA (1986) Coniferous-habitat associations of spiders (Araneae) on red spruce foliage. J Arachnol 14: 315–326.
[44]  Brierton BM, Allen DC, Jennings DT (2003) Spider fauna of sugar maple and white ash in northern and central New York State. J Arachnol 31: 350–362. doi: 10.1636/0161-8202(2003)031[0350:sfosma]2.0.co;2
[45]  Nentwig W, Wissel C (1986) A comparison of prey lengths among spiders. Oecologia 68: 595–600. doi: 10.1007/bf00378777
[46]  Coddington JA, Agnarsson I, Miller JA, Kuntner M, Hormiga G (2009) Undersampling bias: the null hypothesis for singleton species in tropical arthropod surveys. J Anim Ecol 78: 573–584. doi: 10.1111/j.1365-2656.2009.01525.x

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133