[1] | Barraclough TG, Nee S (2001) Phylogenetics and speciation. Trends Ecol Evol 16: 391–399. doi: 10.1016/s0169-5347(01)02161-9
|
[2] | Nee S (2001) Inferring speciation rates from phylogenies. Evolution 55: 661–668. doi: 10.1111/j.0014-3820.2001.tb00801.x
|
[3] | The Marie Curie SPECIATION Network. Butlin R, Debelle A, Kerth C, Snook RR, Beukeboom LW, et al. (2012) What do we need to know about speciation? Trends Ecol Evol 27: 27–39.
|
[4] | Nee S, May RM, Harvey PH (1994) The reconstructed evolutionary process. Phil Trans R Soc Lond B 344: 305–311. doi: 10.1098/rstb.1994.0068
|
[5] | Sanderson MJ, Donoghue MJ (1996) Reconstructing shifts in diversification rates on phylogenetic trees. Trends Ecol Evol 11: 15–20. doi: 10.1016/0169-5347(96)81059-7
|
[6] | Aldous DJ (2001) Stochastic models and descriptive statistics for phylogenetic trees, from Yule to today. Statist Sci 16: 23–34. doi: 10.1214/ss/998929474
|
[7] | Nee S (2006) Birth-death models in macroevolution. Annu Rev Ecol Evol Syst 37: 1–17. doi: 10.1146/annurev.ecolsys.37.091305.110035
|
[8] | Rabosky DL, Lovette IJ (2008) Explosive evolutionary radiations: decreasing speciation or increasing extinction through time? Evolution 62: 1866–1875. doi: 10.1111/j.1558-5646.2008.00409.x
|
[9] | Morlon H, Potts MD, Plotkin JB (2010) Inferring the dynamics of diversification: a coalescent approach. PLoS Biol 8: e1000493. doi: 10.1371/journal.pbio.1000493
|
[10] | Paradis E, Claude J, Strimmer K (2004) APE: Analyses of Phylogenetics and Evolution in R language. Bioinformatics 20: 289–290. doi: 10.1093/bioinformatics/btg412
|
[11] | Rabosky D (2009) LASER: Likelihood Analysis of Speciation/Extinction Rates from Phylogenies. R package version 2.3. Available : http://CRAN.R-project.org/package=laser.
|
[12] | Zuckerkandl E, Pauling L (1965) Evolutionary divergence and convergence in proteins. In: Bryson V, Vogel HJ, editors. Evolving Genes and Proteins. New York: Academic Press. 97–16.
|
[13] | Kimura M (1968) Evolutionary rate at the molecular level. Nature 217: 624–626. doi: 10.1038/217624a0
|
[14] | Lemey P, Posada D. 2009. Molecular clock analysis. In: Vandamme AM, Salemi M, Lemey P, editors. The Phylogenetic Handbook. Cambridge: Cambridge University Press. 362–380.
|
[15] | Drummond AJ, Ho SY, Phillips MJ, Rambaut A (2006) Relaxed phylogenetics and dating with confidence. PLoS Biol 4: e88. doi: 10.1371/journal.pbio.0040088
|
[16] | Felsenstein J (1981) Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17: 368–376. doi: 10.1007/bf01734359
|
[17] | Lepage T, Bryant D, Philippe H, Lartillot N (2007) A general comparison of relaxed molecular clock models. Mol Biol Evol 24: 2669–2680. doi: 10.1093/molbev/msm193
|
[18] | Yoder AD, Yang Z (2000) Estimation of primate speciation dates using local molecular clocks. Mol Biol Evol 17: 1081–1090. doi: 10.1093/oxfordjournals.molbev.a026389
|
[19] | Sanderson MJ (2002) Estimating absolute rates of molecular evolution and divergence times: a penalized likelihood approach. Mol Biol Evol 19: 101–109. doi: 10.1093/oxfordjournals.molbev.a003974
|
[20] | Huelsenbeck JP, Larget B, Swofford D (2000) A compound Poisson process for relaxing the molecular clock. Genetics 154: 1879–1892.
|
[21] | Paradis E (2013) Molecular dating of phylogenies by likelihood methods: a comparison of models and a new information criterion. Mol Phylogenet Evol 67: 436–444. doi: 10.1016/j.ympev.2013.02.008
|
[22] | Martin P, Costello EK, Meyer AF, Nemergut DR, Schmidt SK (2004) The rate and pattern of cladogenesis in microbes. Evolution 58: 946–955. doi: 10.1111/j.0014-3820.2004.tb00429.x
|
[23] | Vinuesa P, Silva C, Werner D, Martínez-Romero E (2005) Population genetics and phylogenetic inference in bacterial molecular systematics: the roles of migration and recombination in Bradyrhizobium species cohesion and delineation. Mol Phylogenet Evol 34: 29–54. doi: 10.1016/j.ympev.2004.08.020
|
[24] | Morlon H, Kemps BD, Plotkin JB, Brisson D (2012) Explosive radiation of a bacterial species group. Evolution 66: 2577–2586. doi: 10.1111/j.1558-5646.2012.01598.x
|
[25] | Martin-Carnahan A, Joseph SW. 2005. Genus I. Aeromonas Stanier 1943, 213AL. In: Garrity GM, Brenner DJ, Krieg NR, Staley JT, editors. Bergey’s Manual of Systematic Bacteriology, vol. 2, part B. New York: Springer. 557–578.
|
[26] | Janda JM, Abbott SL (2010) The genus Aeromonas: taxonomy, pathogenicity and infection. Clin Microbiol Rev 23: 35–73. doi: 10.1128/cmr.00039-09
|
[27] | Lan R, Reeves PR (2001) When does a clone deserve a name? A perspective on bacterial species based on population genetics. Trends Microbiol 9: 419–424. doi: 10.1016/s0966-842x(01)02133-3
|
[28] | Rosselló-Mora R, Amann R (2001) The species concept for prokaryotes. FEMS Microbiol Rev 25: 39–67. doi: 10.1111/j.1574-6976.2001.tb00571.x
|
[29] | Stackebrandt E, Frederiksen W, Garrity GM, Grimont PA, K?mpfer P, et al. (2002) Report of the ad hoc committee for the re-evaluation of the species definition in bacteriology. Int J Syst Evol Microbiol 52: 1043–1047. doi: 10.1099/ijs.0.02360-0
|
[30] | Goris J, Konstantinidis KT, Klappenbach JA, Coenye T, Vandamme P, et al. (2007) DNA-DNA hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Microbiol 57: 81–91. doi: 10.1099/ijs.0.64483-0
|
[31] | Konstantinidis KT, Tiedje JM (2007) Prokaryotic taxonomy and phylogeny in the genomic era: advancements and challenges ahead. Curr Opin Microbiol 10: 504–509. doi: 10.1016/j.mib.2007.08.006
|
[32] | Ochman H, Wilson AC (1987) Evolution in bacteria: evidence for a universal substitution rate in cellular genomes. J Molec Evol 26: 74–86. doi: 10.1007/bf02111283
|
[33] | Ochman H, Wilson AC (1987) Evolutionary history of enteric bacteria. In: Neidhardt FC et al.., editors. Escherichia coli and Salmonella typhimurium: Molecular and Cellular Aspects. Washington: ASM Publications. 1649–1654.
|
[34] | Rabosky DL (2006) Likelihood methods for detecting temporal shifts in diversification rates. Evolution 60: 1152–1164. doi: 10.1111/j.0014-3820.2006.tb01194.x
|
[35] | McKenzie A, Steel M (2000) Distributions of cherries for two models of trees. Math Biosci 164: 81–92. doi: 10.1016/s0025-5564(99)00060-7
|
[36] | Pybus OG, Harvey PH (2000) Testing macro-evolutionary models using incomplete molecular phylogenies. Proc Biol Sci 267: 2267–2272. doi: 10.1098/rspb.2000.1278
|
[37] | Fordyce JA (2010) Interpreting the gamma statistic in phylogenetic diversification rate studies: a rate decrease does not necessarily indicate an early burst. PLoS One 5: e11781. doi: 10.1371/journal.pone.0011781
|
[38] | Fontaneto D, Tang CQ, Obertegger U, Leasi F, Barraclough TG (2012) Different diversification rates between sexual and asexual organisms. Evol Biol 39: 262–270. doi: 10.1007/s11692-012-9161-z
|
[39] | Soler L, Yá?ez MA, Chacón MR, Aguilera-Arreola MG, Catalán V, et al. (2004) Phylogenetic analysis of the genus Aeromonas based on two housekeeping genes. Int J Syst Evol Microbiol 54: 1511–1519.
|
[40] | Küpfer M, Kuhnert P, Korczak BM, Peduzzi R, Demarta A (2006) Genetic relationships of Aeromonas strains inferred from 16S rRNA, gyrB and rpoD gene sequences. Int J Syst Evol Microbiol 56: 2741–2751. doi: 10.1099/ijs.0.63650-0
|
[41] | Nhung PH, Hata H, Ohkusu K, Noda M, Shah MM, et al. (2007) Use of the novel phylogenetic marker dnaJ and DNA-DNA hybridization to clarify interrelationships within the genus Aeromonas. Int J Syst Evol Microbiol 57: 1232–1237. doi: 10.1099/ijs.0.64957-0
|
[42] | Mi?ana-Galbis D, Urbizu-Serrano A, Farfán M, Fusté MC, Lorén JG (2009) Phylogenetic analysis and identification of Aeromonas species based on sequencing of the cpn60 universal target. Int J Syst Evol Microbiol 59: 1976–1983. doi: 10.1099/ijs.0.005413-0
|
[43] | Farfán M, Mi?ana-Galbis D, Garreta A, Lorén JG, Fusté MC (2010) Malate dehydrogenase: a useful phylogenetic marker for the genus Aeromonas. Syst Appl Microbiol 33: 427–435. doi: 10.1016/j.syapm.2010.09.005
|
[44] | Xia X, Xie Z (2001) DAMBE: software package for data analysis in molecular biology and evolution. J Hered 92: 371–373. doi: 10.1093/jhered/92.4.371
|
[45] | Librado P, Rozas J (2009) DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25: 1451–1452. doi: 10.1093/bioinformatics/btp187
|
[46] | Posada D (2008) JModelTest: Phylogenetic Model Averaging. Mol Biol Evol 25: 1253–1256. doi: 10.1093/molbev/msn083
|
[47] | Guindon S, Dufayard JF, Lefort V, Anisimova M, Hordijk W, et al. (2010) New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst Biol 59: 307–321.
|
[48] | Tamura K, Peterson D, Peterson N, Stecher G, Nei M, et al. (2011) MEGA5: Molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28: 2731–2739. doi: 10.1093/molbev/msr121
|
[49] | Drummond AJ, Rambaut A (2007) BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evol Biol 7: 214. doi: 10.1186/1471-2148-7-214
|
[50] | Plummer M, Best N, Cowles K, Vines K (2006) CODA: Convergence diagnosis and output analysis for MCMC. R News 6: 7–11.
|
[51] | Rambaut A, Drummond AJ (2007) Tracer v1.4. Available: http://beast.bio.ed.ac.uk/Tracer.
|
[52] | Yang Z (2007) PAML 4: Phylogenetic Analysis by Maximum Likelihood. Mol Biol Evol 24: 1586–1591. doi: 10.1093/molbev/msm088
|
[53] | Rabosky DL (2006) LASER: A maximum likelihood toolkit for detecting temporal shifts in diversification rates from molecular phylogenies. Evol Bioinform Online 2: 247–250. doi: 10.1554/05-424.1
|
[54] | Stadler T (2010) TreeSim in R-simulating trees under the birth-death model. Available: http://cran.r-project.org/web/packages/T?reeSim/index.html.
|
[55] | Blum MGB, Fran?ois O (2005) On statistical tests of phylogeny imbalance: The Sackin and other indices revisited. Math Biosci 195: 141–153. doi: 10.1016/j.mbs.2005.03.003
|
[56] | Colless DH (1982) Review of phylogenetics: The theory and practice of phylogenetic systematics. Syst Zool 31: 100–104. doi: 10.2307/2413420
|
[57] | Agapow PM, Purvis A (2002) Power of eight tree shape statistics to detect non-random diversification: A comparison by simulation of two models of cladogenesis. Syst Biol 51: 866–872.
|
[58] | Blum MGB, Fran?ois O, Janson S (2006) The mean, variance and limiting distribution of two statistics sensitive to phylogenetic tree balance. Ann Appl Probab 16: 2195–2214. doi: 10.1214/105051606000000547
|
[59] | Bortolussi N, Durand E, Blum M, Fran?ois O (2011) apTreeshape: Analyses of Phylogenetic Treeshape. R package v.1.4–4. Available: http://CRAN.R-project.org/package=apTree?shape.
|
[60] | R Development Core Team. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0. Available: http://www.r-project.org/.
|
[61] | Ricklefs RE (2007) Estimating diversification rates from phylogenetic information. Trends Ecol Evol 22: 601–610. doi: 10.1016/j.tree.2007.06.013
|
[62] | Doolittle RF, Feng DF, Tsang S, Cho G, Little E (1996) Determining divergence times of the major kingdoms of living organism with a protein clock. Science 271: 470–477. doi: 10.1126/science.271.5248.470
|
[63] | Ochman H (2003) Neutral mutations and neutral substitutions in bacterial genomes. Mol Biol Evol 20: 2091–2096. doi: 10.1093/molbev/msg229
|
[64] | Degnan PH, Lazarus AB, Brock CD, Wernegreen JJ (2004) Host-symbiont stability and fast evolutionary rates in an ant-bacterium association: cospeciation of Camponotus species and their endosymbionts, Candidatus Blochmannia. Syst Biol 53: 95–110.
|
[65] | Cohan FM (2002) What are bacterial species? Annu Rev Microbiol 56: 457–487. doi: 10.1146/annurev.micro.56.012302.160634
|
[66] | Cohan FM (2002) Sexual isolation and speciation in bacteria. Genetica 116: 359–370. doi: 10.1007/978-94-010-0265-3_17
|
[67] | Achtman M, Wagner M (2008) Microbial diversity and the genetic nature of microbial species. Nat Rev Microbiol 6: 431–440. doi: 10.1038/nrmicro1872
|
[68] | Fraser C, Alm EJ, Polz MF, Spratt BG, Hanage WP (2009) The bacterial species challenge: making sense of genetic and ecological diversity. Science 323: 741–746. doi: 10.1126/science.1159388
|
[69] | Barraclough TG, Hughes M, Ashford-Hodges N, Fujisawa T (2009) Inferring evolutionarily significant units of bacterial diversity from broad environmental surveys of single-locus data. Biol Lett 5: 425–428. doi: 10.1098/rsbl.2009.0091
|
[70] | Horner-Devine MC, Carney KM, Bohannan BJ (2004) An ecological perspective on bacterial biodiversity. Proc Biol Sci 271: 113–122. doi: 10.1098/rspb.2003.2549
|
[71] | Daubin V, Gouy M, Perrière G (2002) A phylogenomic approach to bacterial phylogeny: evidence of a core of genes sharing a common history. Genome Res 12: 1080–1090. doi: 10.1101/gr.187002
|
[72] | Kurland CG, Canback B, Berg OG (2003) Horizontal gene transfer: a critical view. Proc Natl Acad Sci USA 100: 9658–9662. doi: 10.1073/pnas.1632870100
|
[73] | Lerat E, Daubin V, Moran NA (2003) From gene trees to organismal phylogeny in prokaryotes: The case of the γ-Proteobacteria. PLoS Biol 1: 101–109. doi: 10.1371/journal.pbio.0000019
|
[74] | Majewski J, Zawadzki P, Pickerill P, Cohan FM, Dowson CG (2000) Barriers to genetic exchange between bacterial species: Streptococcus pneumoniae transformation. J Bacteriol 182: 1016–1023. doi: 10.1128/jb.182.4.1016-1023.2000
|
[75] | Fraser C, Hanage WP, Spratt BG (2007) Recombination and the nature of bacterial speciation. Science 315: 476–480. doi: 10.1126/science.1127573
|
[76] | Martínez-Murcia AJ, Monera A, Saavedra MJ, Oncina R, López-Alvarez M, et al. (2011) Multilocus phylogenetic analysis of the genus Aeromonas. Syst Appl Microbiol 34: 189–199. doi: 10.1016/j.syapm.2010.11.014
|
[77] | Martino MA, Fasolato L, Montemurro F, Rosteghin M, Manfrin A, et al. (2011) Determination of microbial diversity of Aeromonas strains on the basis of multilocus sequence typing, phenotype, and presence of putative virulence genes. Appl Environ Microbiol 77: 4986–5000. doi: 10.1128/aem.00708-11
|
[78] | Roger F, Marchandin H, Jumas-Bilak E, Kodjo A, BVH C, et al. (2012) Multilocus genetics to reconstruct aeromonad evolution. BMC Microbiol 12: 62 doi: 10.1186/1471-2180-12-62.
|
[79] | Fusté MC, Farfán M, Mi?ana-Galbis D, Albarral V, Sanglas A et al.. (2012) Population Genetics of the “Aeromonas hydrophila Species Complex”. In: Fusté MC, editor. Studies in Population Genetics. Croatia: InTech. 39–54.
|
[80] | Euzéby JP (2013) LPSN: List of Prokaryotic names with Standing in Nomenclature. Available: http://www.bacterio.cict.fr/.
|
[81] | Kuo CH, Ochman H (2009) Inferring clocks when lacking rocks: the variable rates of molecular evolution in bacteria. Biol Direct 4: 35. doi: 10.1186/1745-6150-4-35
|
[82] | Battistuzzi FU, Feijao A, Hedges SB (2004) A genomic timescale of prokaryote evolution: insights into the origin of methanogenesis, phototrophy, and the colonization of land. BMC Evol Biol 4: 44.
|
[83] | McPeek MA, Brown JM (2007) Clade age and not diversification rate explains species richness among animal taxa. Am Nat 169: E97–106. doi: 10.1086/512135
|
[84] | Magallón S, Sanderson MJ (2001) Absolute diversification rates in angiosperm clades. Evolution 55: 1762–1780. doi: 10.1111/j.0014-3820.2001.tb00826.x
|
[85] | Lynch M, Conery JS (2003) The origins of genome complexity. Science 302: 1401–1404. doi: 10.1126/science.1089370
|
[86] | Butterfield NJ (2011) Animals and the invention of the Phanerozoic Earth system. Trends Ecol Evol 26: 81–87. doi: 10.1016/j.tree.2010.11.012
|
[87] | de Queiroz K (2005) Ernst Mayr and the modern concept of species. Proc Natl Acad Sci USA 102: 6600–6607. doi: 10.1073/pnas.0502030102
|
[88] | Ovaskainen O, Hanski I (2003) Extinction threshold in metapopulation models. Ann Zool Fennici 40: 81–97.
|
[89] | Finlay BJ, Clarke KJ (1999) Ubiquitous dispersal of microbial species. Nature 400: 828–828. doi: 10.1038/23616
|
[90] | Fierer N (2008) Microbial biogeography: patterns in microbial diversity across space and time. In: Zengler K, editor. Accessing Uncultivated Microorganisms: from the Environment to Organisms and Genomes and Back. Whashington DC: ASM Press. 95–115.
|
[91] | Papke RT, Ward DM (2004) The importance of physical isolation to microbial diversification. FEMS Microbiol Ecol 48: 293–303. doi: 10.1016/j.femsec.2004.03.013
|
[92] | Sahney S, Benton MJ (2008) Recovery from the most profound mass extinction of all time. Proc Biol Sci 275: 759–765. doi: 10.1098/rspb.2007.1370
|
[93] | Benton MJ (1995) Diversification and extinction in the history of life. Science 268: 52–58. doi: 10.1126/science.7701342
|
[94] | Sahney S, Benton MJ, Ferry PA (2010) Links between global taxonomic diversity, ecological diversity and the expansion of vertebrates on land. Biol Lett 6: 544–547. doi: 10.1098/rsbl.2009.1024
|
[95] | Sepkoski JJ Jr (2002) A compendium of fossil marine animal genera. Bull Am Paleontol 363: 1–560.
|
[96] | Rohde RA, Muller RA (2005) Cycles in fossil diversity. Nature 434: 208–210. Supplemental Table E3.
|