[1] | Caldarelli G (2007) Scale-Free Networks: Complex Webs in Nature and Technology (Oxford Finance). Oxford University Press, USA. Available: http://www.amazon.com/exec/obidos/redire?ct?tag=citeulike07-20&path=ASIN/01992115?15.
|
[2] | Bhalla US, Iyengar R (1999) Emergent properties of networks of biological signaling pathways. Science 283.
|
[3] | Strogatz SH (2001) Exploring complex networks. Nature 410: 268–276. doi: 10.1038/35065725
|
[4] | Barabási AL, Albert R (1999) Emergence of scaling in random networks. Science 286: 509–512. doi: 10.1126/science.286.5439.509
|
[5] | Jeong H, Tombor B, Albert R, Oltvai ZN, Barabási AL (2000) The large-scale organization of metabolic networks. Nature 407: 651–654. doi: 10.1038/35036627
|
[6] | Newman MEJ (2006) Modularity and community structure in networks. Proceedings of the National Academy of Sciences 103: 8577–8582. doi: 10.1073/pnas.0601602103
|
[7] | Milo R, Shen-Orr S, Itzkovitz S, Kashtan N, Chklovskii D, et al. (2002) Network motifs: Simple building blocks of complex networks. Science 298: 824–827. doi: 10.1126/science.298.5594.824
|
[8] | Watts DJ, Strogatz SH (1998) Collective dynamics of ‘small-world’ networks. Nature 393: 440–442. doi: 10.1038/30918
|
[9] | Koschützki D, Lehmann KA, Peeters L, Richter S, Podehl DT, et al. (2005) Centrality indices. In: Brandes U, Erlebach T, editors, Network Analysis: Methodological Foundations, Springer. pp. 16–61.
|
[10] | Freeman LC (1978) Centrality in social networks: conceptual clarification. Social networks 1: 215–239. doi: 10.1016/0378-8733(78)90021-7
|
[11] | Scardoni G, Petterlini M, Laudanna C (2009) Analyzing biological network parameters with CentiScaPe. Bioinformatics 25: 2857–2859. doi: 10.1093/bioinformatics/btp517
|
[12] | Barabási AL, Oltvai ZN (2004) Network biology: understanding the cell’s functional organization. Nature Reviews Genetics 5: 101–113. doi: 10.1038/nrg1272
|
[13] | Jeong H, Mason SP, Barabási AL, Oltvai ZN (2001) Lethality and centrality in protein networks. Nature 411: 41–42. doi: 10.1038/35075138
|
[14] | Albert R, Jeong H, Barabási AL (2000) Error and attack tolerance of complex networks. Nature 406: 378–382. doi: 10.1038/35019019
|
[15] | McCulloh I, Carley K (2011) Detecting change in longitudinal social networks. Journal of social structure 12.
|
[16] | Crucitti P, Latora V, Marchiori M, Rapisarda A (2004) Error and attack tolerance of complex networks. Physica A: Statistical Mechanics and its Applications 340: 388–394. doi: 10.1016/j.physa.2004.04.031
|
[17] | Liu YY, Slotine JJ, Barabási AL (2011) Controllability of complex networks. Nature 473: 167–173. doi: 10.1038/nature10011
|
[18] | Goguen JA, Meseguer J (1982) Security policies and security models. In: 1982 Symposium on Security and Privacy. IEEE Computer Society Press, pp. 11–20.
|
[19] | Brouwers L, Iskar M, Zeller G, van Noort V, Bork P (2011) Network neighbors of drug targets contribute to drug side-effect similarity. PLoS ONE 6: e22187. doi: 10.1371/journal.pone.0022187
|
[20] | Yamada T, Bork P (2009) Evolution of biomolecular networks lessons from metabolic and protein interactions. Nature Reviews Molecular Cell Biology 10: 791–803. doi: 10.1038/nrm2787
|
[21] | Ladha J, Donakonda S, Agrawal S, Thota B, Srividya MR, et al. (2010) Glioblastoma-specific protein interaction network identifies pp1a and csk21 as connecting molecules between cell cycleassociated genes. Cancer Res 70: 6437–47. doi: 10.1158/0008-5472.can-10-0819
|
[22] | Missiuro PV, Liu K, Zou L, Ross BC, Zhao G, et al. (2009) Information Flow Analysis of Interactome Networks. PLoS Comput Biol 5: e1000350+.
|
[23] | Newman MEJ (2003) The Structure and Function of Complex Networks. SIAM Review 45: 167–256. doi: 10.1137/s003614450342480
|
[24] | Higareda-Almaraz JCC, Enríquez-Gasca MdRdelR, Hernández-Ortiz M, Resendis-Antonio O, Encarnación-Guevara S (2011) Proteomic patterns of cervical cancer cell lines, a network perspective. BMC systems biology 5: 96+.
|
[25] | Choura M, Reba? A (2010) Application of computational approaches to study signalling networks of nuclear and Tyrosine kinase receptors. Biology direct 5: 58+.
|
[26] | Sengupta U, Ukil S, Dimitrova N, Agrawal S (2009) Expression-based network biology identifies alteration in key regulatory pathways of type 2 diabetes and associated risk/complications. PloS one 4: e8100+.
|
[27] | Lepp Z, Huang C, Okada T (2009) Finding Key Members in Compound Libraries by Analyzing Networks of Molecules Assembled by Structural Similarity. Journal of Chemical Information and Modeling 0: 091030094710018+.
|
[28] | Feltes B, de Faria Poloni J, Bonatto D (2011) The developmental aging and origins of health and disease hypotheses explained by different protein networks. Biogerontology 12: 293–308. doi: 10.1007/s10522-011-9325-8
|
[29] | Arsenio Rodriguez DI (2011) Characterization in silico of flavonoids biosynthesis in theobroma cacao l. Network Biology 1: 34–45.
|
[30] | Holme P, Huss M, Jeong H (2003) Subnetwork hierarchies of biochemical pathways. Bioinformatics 19: 532–538. doi: 10.1093/bioinformatics/btg033
|
[31] | Wuchty S, Stadler PF (2003) Centers of complex networks. J Theor Biol 223: 45–53. doi: 10.1016/s0022-5193(03)00071-7
|
[32] | Joy MP, Brock A, Ingber DE, Huang S (2005) High-betweenness proteins in the yeast protein interaction network. J Biomed Biotechnol 2005: 96–103. doi: 10.1155/jbb.2005.96
|
[33] | Freeman LC (1977) A set of measures of centrality based on betweenness. Sociometry 40: 35–41. doi: 10.2307/3033543
|
[34] | Freeman LC, Borgatti SP, White DR (1991) Centrality in valued graphs: A measure for betweenness based on network flow. Social networks 13: 141–154. doi: 10.1016/0378-8733(91)90017-n
|
[35] | Junker B, Koschutzki D, Schreiber F (2006) Exploration of biological network centralities with centibin. BMC Bioinformatics 7: 219+.
|
[36] | Guimerà R, Danon L, Díaz-Guilera A, Giralt F, Arenas A (2003) Self-similar community structure in a network of human interactions. Phys Rev E 68: 065103. doi: 10.1103/physreve.68.065103
|
[37] | Ley K, Laudanna C, Cybulsky MI, Nourshargh S (2007) Getting to the site of inflammation: the leukocyte adhesion cascade updated. Nature Reviews Immunology 7: 678–689. doi: 10.1038/nri2156
|
[38] | Laudanna C, Bolomini-Vittori M (2009) Integrin activation in the immune system. Wiley Interdisciplinary Reviews: Systems Biology and Medicine 1: 116–127. doi: 10.1002/wsbm.9
|
[39] | Barabási AL, Gulbahce N, Loscalzo J (2011) Network medicine: a network-based approach to human disease. Nature reviews Genetics 12: 56–68. doi: 10.1038/nrg2918
|
[40] | Emmert-Streib F, Glazko GV (2010) Network biology: a direct approach to study biological function. Wiley Interdisciplinary Reviews: Systems Biology and Medicine 4: 379-91 doi: 10.1002/wsbm.134
|
[41] | Bolomini-Vittori M, Montresor A, Giagulli C, Staunton D, Rossi B, et al. (2009) Regulation of conformer-specific activation of the integrin LFA-1 by a chemokine-triggered Rho signaling module. Nature immunology.
|
[42] | Giagulli C, Scarpini E, Ottoboni L, Narumiya S, Butcher EC, et al. (2004) Rhoa and [zeta] pkc control distinct modalities of lfa-1 activation by chemokines: Critical role of lfa-1 affinity triggering in lymphocyte in vivo homing. Immunity 20: 25–35. doi: 10.1016/s1074-7613(03)00350-9
|
[43] | Constantin G, Majeed M, Giagulli C, Piccio L, Kim J, et al. (2000) Chemokines trigger immediate beta2 integrin affinity and mobility changes - differential regulation and roles in lymphocyte arrest under flow. Immunity 13: 759–769 (11). doi: 10.1016/s1074-7613(00)00074-1
|
[44] | Giagulli C, Ottoboni L, Caveggion E, Rossi B, Lowell C, et al. (2006) The src family kinases hck and fgr are dispensable for inside-out, chemoattractant-induced signaling regulating 2 integrin affinity and valency in neutrophils, but are required for 2 integrin-mediated outside-in signaling involved in sustained adhesion. J Immunol 177: 604611. doi: 10.4049/jimmunol.177.1.604
|
[45] | Kinashi T, Katagiri K (2004) Regulation of lymphocyte adhesion and migration by the small gtpase rap1 and its effector molecule, rapl. Immunology Letters 93: 1–5. doi: 10.1016/j.imlet.2004.02.008
|
[46] | Weber K, Ostermann G, Zernecke A, Schroder A, Klickstein L, et al. (2001) Dual role of hras in regulation of lymphocyte function antigen-1 activity by stromal cell-derived factor-1alpha: implications for leukocyte transmigration. Mol Biol Cell 12: 30743086. doi: 10.1091/mbc.12.10.3074
|
[47] | Constantin G, Brocke S, Izikson A, Laudanna C, Butcher E (1998) Tyrphostin ag490, a tyrosine kinase inhibitor, blocks actively induced experimental autoimmune encephalomyelitis. Eur J Immunol 28: 3523–3529. doi: 10.1002/(sici)1521-4141(199811)28:11<3523::aid-immu3523>3.0.co;2-x
|