全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2014 

Node Interference and Robustness: Performing Virtual Knock-Out Experiments on Biological Networks: The Case of Leukocyte Integrin Activation Network

DOI: 10.1371/journal.pone.0088938

Full-Text   Cite this paper   Add to My Lib

Abstract:

The increasing availability of large network datasets derived from high-throughput experiments requires the development of tools to extract relevant information from biological networks, and the development of computational methods capable of detecting qualitative and quantitative changes in the topological properties of biological networks is of critical relevance. We introduce the notions of node and as measures of the reciprocal influence between nodes within a network. We examine the theoretical significance of these new, centrality-based, measures by characterizing the topological relationships between nodes and groups of nodes. Node interference analysis allows topologically determining the context of functional influence of single nodes. Conversely, the node robustness analysis allows topologically identifying the nodes having the highest functional influence on a specific node. A new Cytoscape plug-in calculating these measures was developed and applied to a protein-protein interaction network specifically regulating integrin activation in human primary leukocytes. Notably, the functional effects of compounds inhibiting important protein kinases, such as SRC, HCK, FGR and JAK2, are predicted by the interference and robustness analysis, are in agreement with previous studies and are confirmed by laboratory experiments. The interference and robustness notions can be applied to a variety of different contexts, including, for instance, the identification of potential side effects of drugs or the characterization of the consequences of genes deletion, duplication or of proteins degradation, opening new perspectives in biological network analysis.

References

[1]  Caldarelli G (2007) Scale-Free Networks: Complex Webs in Nature and Technology (Oxford Finance). Oxford University Press, USA. Available: http://www.amazon.com/exec/obidos/redire?ct?tag=citeulike07-20&path=ASIN/01992115?15.
[2]  Bhalla US, Iyengar R (1999) Emergent properties of networks of biological signaling pathways. Science 283.
[3]  Strogatz SH (2001) Exploring complex networks. Nature 410: 268–276. doi: 10.1038/35065725
[4]  Barabási AL, Albert R (1999) Emergence of scaling in random networks. Science 286: 509–512. doi: 10.1126/science.286.5439.509
[5]  Jeong H, Tombor B, Albert R, Oltvai ZN, Barabási AL (2000) The large-scale organization of metabolic networks. Nature 407: 651–654. doi: 10.1038/35036627
[6]  Newman MEJ (2006) Modularity and community structure in networks. Proceedings of the National Academy of Sciences 103: 8577–8582. doi: 10.1073/pnas.0601602103
[7]  Milo R, Shen-Orr S, Itzkovitz S, Kashtan N, Chklovskii D, et al. (2002) Network motifs: Simple building blocks of complex networks. Science 298: 824–827. doi: 10.1126/science.298.5594.824
[8]  Watts DJ, Strogatz SH (1998) Collective dynamics of ‘small-world’ networks. Nature 393: 440–442. doi: 10.1038/30918
[9]  Koschützki D, Lehmann KA, Peeters L, Richter S, Podehl DT, et al. (2005) Centrality indices. In: Brandes U, Erlebach T, editors, Network Analysis: Methodological Foundations, Springer. pp. 16–61.
[10]  Freeman LC (1978) Centrality in social networks: conceptual clarification. Social networks 1: 215–239. doi: 10.1016/0378-8733(78)90021-7
[11]  Scardoni G, Petterlini M, Laudanna C (2009) Analyzing biological network parameters with CentiScaPe. Bioinformatics 25: 2857–2859. doi: 10.1093/bioinformatics/btp517
[12]  Barabási AL, Oltvai ZN (2004) Network biology: understanding the cell’s functional organization. Nature Reviews Genetics 5: 101–113. doi: 10.1038/nrg1272
[13]  Jeong H, Mason SP, Barabási AL, Oltvai ZN (2001) Lethality and centrality in protein networks. Nature 411: 41–42. doi: 10.1038/35075138
[14]  Albert R, Jeong H, Barabási AL (2000) Error and attack tolerance of complex networks. Nature 406: 378–382. doi: 10.1038/35019019
[15]  McCulloh I, Carley K (2011) Detecting change in longitudinal social networks. Journal of social structure 12.
[16]  Crucitti P, Latora V, Marchiori M, Rapisarda A (2004) Error and attack tolerance of complex networks. Physica A: Statistical Mechanics and its Applications 340: 388–394. doi: 10.1016/j.physa.2004.04.031
[17]  Liu YY, Slotine JJ, Barabási AL (2011) Controllability of complex networks. Nature 473: 167–173. doi: 10.1038/nature10011
[18]  Goguen JA, Meseguer J (1982) Security policies and security models. In: 1982 Symposium on Security and Privacy. IEEE Computer Society Press, pp. 11–20.
[19]  Brouwers L, Iskar M, Zeller G, van Noort V, Bork P (2011) Network neighbors of drug targets contribute to drug side-effect similarity. PLoS ONE 6: e22187. doi: 10.1371/journal.pone.0022187
[20]  Yamada T, Bork P (2009) Evolution of biomolecular networks lessons from metabolic and protein interactions. Nature Reviews Molecular Cell Biology 10: 791–803. doi: 10.1038/nrm2787
[21]  Ladha J, Donakonda S, Agrawal S, Thota B, Srividya MR, et al. (2010) Glioblastoma-specific protein interaction network identifies pp1a and csk21 as connecting molecules between cell cycleassociated genes. Cancer Res 70: 6437–47. doi: 10.1158/0008-5472.can-10-0819
[22]  Missiuro PV, Liu K, Zou L, Ross BC, Zhao G, et al. (2009) Information Flow Analysis of Interactome Networks. PLoS Comput Biol 5: e1000350+.
[23]  Newman MEJ (2003) The Structure and Function of Complex Networks. SIAM Review 45: 167–256. doi: 10.1137/s003614450342480
[24]  Higareda-Almaraz JCC, Enríquez-Gasca MdRdelR, Hernández-Ortiz M, Resendis-Antonio O, Encarnación-Guevara S (2011) Proteomic patterns of cervical cancer cell lines, a network perspective. BMC systems biology 5: 96+.
[25]  Choura M, Reba? A (2010) Application of computational approaches to study signalling networks of nuclear and Tyrosine kinase receptors. Biology direct 5: 58+.
[26]  Sengupta U, Ukil S, Dimitrova N, Agrawal S (2009) Expression-based network biology identifies alteration in key regulatory pathways of type 2 diabetes and associated risk/complications. PloS one 4: e8100+.
[27]  Lepp Z, Huang C, Okada T (2009) Finding Key Members in Compound Libraries by Analyzing Networks of Molecules Assembled by Structural Similarity. Journal of Chemical Information and Modeling 0: 091030094710018+.
[28]  Feltes B, de Faria Poloni J, Bonatto D (2011) The developmental aging and origins of health and disease hypotheses explained by different protein networks. Biogerontology 12: 293–308. doi: 10.1007/s10522-011-9325-8
[29]  Arsenio Rodriguez DI (2011) Characterization in silico of flavonoids biosynthesis in theobroma cacao l. Network Biology 1: 34–45.
[30]  Holme P, Huss M, Jeong H (2003) Subnetwork hierarchies of biochemical pathways. Bioinformatics 19: 532–538. doi: 10.1093/bioinformatics/btg033
[31]  Wuchty S, Stadler PF (2003) Centers of complex networks. J Theor Biol 223: 45–53. doi: 10.1016/s0022-5193(03)00071-7
[32]  Joy MP, Brock A, Ingber DE, Huang S (2005) High-betweenness proteins in the yeast protein interaction network. J Biomed Biotechnol 2005: 96–103. doi: 10.1155/jbb.2005.96
[33]  Freeman LC (1977) A set of measures of centrality based on betweenness. Sociometry 40: 35–41. doi: 10.2307/3033543
[34]  Freeman LC, Borgatti SP, White DR (1991) Centrality in valued graphs: A measure for betweenness based on network flow. Social networks 13: 141–154. doi: 10.1016/0378-8733(91)90017-n
[35]  Junker B, Koschutzki D, Schreiber F (2006) Exploration of biological network centralities with centibin. BMC Bioinformatics 7: 219+.
[36]  Guimerà R, Danon L, Díaz-Guilera A, Giralt F, Arenas A (2003) Self-similar community structure in a network of human interactions. Phys Rev E 68: 065103. doi: 10.1103/physreve.68.065103
[37]  Ley K, Laudanna C, Cybulsky MI, Nourshargh S (2007) Getting to the site of inflammation: the leukocyte adhesion cascade updated. Nature Reviews Immunology 7: 678–689. doi: 10.1038/nri2156
[38]  Laudanna C, Bolomini-Vittori M (2009) Integrin activation in the immune system. Wiley Interdisciplinary Reviews: Systems Biology and Medicine 1: 116–127. doi: 10.1002/wsbm.9
[39]  Barabási AL, Gulbahce N, Loscalzo J (2011) Network medicine: a network-based approach to human disease. Nature reviews Genetics 12: 56–68. doi: 10.1038/nrg2918
[40]  Emmert-Streib F, Glazko GV (2010) Network biology: a direct approach to study biological function. Wiley Interdisciplinary Reviews: Systems Biology and Medicine 4: 379-91 doi: 10.1002/wsbm.134
[41]  Bolomini-Vittori M, Montresor A, Giagulli C, Staunton D, Rossi B, et al. (2009) Regulation of conformer-specific activation of the integrin LFA-1 by a chemokine-triggered Rho signaling module. Nature immunology.
[42]  Giagulli C, Scarpini E, Ottoboni L, Narumiya S, Butcher EC, et al. (2004) Rhoa and [zeta] pkc control distinct modalities of lfa-1 activation by chemokines: Critical role of lfa-1 affinity triggering in lymphocyte in vivo homing. Immunity 20: 25–35. doi: 10.1016/s1074-7613(03)00350-9
[43]  Constantin G, Majeed M, Giagulli C, Piccio L, Kim J, et al. (2000) Chemokines trigger immediate beta2 integrin affinity and mobility changes - differential regulation and roles in lymphocyte arrest under flow. Immunity 13: 759–769 (11). doi: 10.1016/s1074-7613(00)00074-1
[44]  Giagulli C, Ottoboni L, Caveggion E, Rossi B, Lowell C, et al. (2006) The src family kinases hck and fgr are dispensable for inside-out, chemoattractant-induced signaling regulating 2 integrin affinity and valency in neutrophils, but are required for 2 integrin-mediated outside-in signaling involved in sustained adhesion. J Immunol 177: 604611. doi: 10.4049/jimmunol.177.1.604
[45]  Kinashi T, Katagiri K (2004) Regulation of lymphocyte adhesion and migration by the small gtpase rap1 and its effector molecule, rapl. Immunology Letters 93: 1–5. doi: 10.1016/j.imlet.2004.02.008
[46]  Weber K, Ostermann G, Zernecke A, Schroder A, Klickstein L, et al. (2001) Dual role of hras in regulation of lymphocyte function antigen-1 activity by stromal cell-derived factor-1alpha: implications for leukocyte transmigration. Mol Biol Cell 12: 30743086. doi: 10.1091/mbc.12.10.3074
[47]  Constantin G, Brocke S, Izikson A, Laudanna C, Butcher E (1998) Tyrphostin ag490, a tyrosine kinase inhibitor, blocks actively induced experimental autoimmune encephalomyelitis. Eur J Immunol 28: 3523–3529. doi: 10.1002/(sici)1521-4141(199811)28:11<3523::aid-immu3523>3.0.co;2-x

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133