17β-estradiol (E2)-dependent estrogen receptor (ER) α intracellular concentration is a well recognized critical step in the pleiotropic effects elicited by E2 in several target tissues. Beside E2, a class of synthetic and plant-derived chemicals collectively named endocrine disruptors (EDs) or xenoestrogens bind to and modify both nuclear and extra-nuclear ERα activities. However, at the present no information is available on the ability of EDs to hamper ERα intracellular concentration. Here, the effects of bisphenol A (BPA) and naringenin (Nar), prototypes of synthetic and plant-derived ERα ligands, have been evaluated on ERα levels in MCF-7 cells. Both EDs mimic E2 in triggering ERα Ser118 phosphorylation and gene transcription. However, only E2 or BPA induce an increase of cell proliferation; whereas 24 hrs after Nar stimulation a dose-dependent decrease in cell number is reported. E2 or BPA treatment reduces ERα protein and mRNA levels after 24 hrs. Contrarily, Nar stimulation does not alter ERα content but reduces ERα mRNA levels like other ligands. Co-stimulation experiments indicate that 48 hrs of Nar treatment prevents the E2-induced ERα degradation and hijacks the physiological ability of E2:ERα complex to regulate gene transcription. Mechanistically, Nar induces ERα protein accumulation by preventing proteasomal receptor degradation via persistent activation of p38/MAPK pathway. As a whole these data demonstrate that ERα intracellular concentration is an important target through which EDs hamper the hormonal milieu of E2 target cells driving cells to different outcomes or mimicking E2 even in the absence of the hormone.
References
[1]
Ascenzi P, Bocedi A, Marino M (2006) Structure-function relationship of estrogen receptor α and β: impact on human health. Mol Aspects Med 27: 299–402. doi: 10.1016/j.mam.2006.07.001
[2]
Marino M, Pellegrini M, La Rosa P, Acconcia F (2012) Susceptibility of estrogen receptor rapid responses to xenoestrogens: Physiological outcomes. Steroids 77: 910–917. doi: 10.1016/j.steroids.2012.02.019
[3]
Caiazza F, Galluzzo P, Lorenzetti S, Marino M (2007) 17β-estradiol induces ERβ up-regulation via p38/MAPK activation in colon cancer cells. Biochem Biophys Res Commun 359: 102–107. doi: 10.1016/j.bbrc.2007.05.059
[4]
La Rosa P, Pesiri V, Leclercq G, Marino M, Acconcia F (2012) Palmitoylation regulates 17β-estradiol-induced estrogen receptor-α degradation and transcriptional activity. Mol Endocrinol 26: 762–774. doi: 10.1210/me.2011-1208
[5]
Thomas C, Gustafsson JA (2011) The different roles of ER subtypes in cancer biology and therapy. Nat Rev Cancer 11: 597–608. doi: 10.1038/nrc3093
[6]
Roger P, Sahla ME, Makela S, Gustafsson JA, Baldet P, et al. (2001) Decreased expression of estrogen receptor βprotein in proliferative preinvasive mammary tumors. Cancer Res 61: 2537–2541.
[7]
Leclercq G, Lacroix M, Laios I, Laurent G (2006) Estrogen receptor α: impact of ligands on intracellular shuttling and turnover rate in breast cancer cells. Curr Cancer Drug Targets 6: 39–64. doi: 10.2174/156800906775471716
[8]
Reid G, Hubner MR, Metivier R, Brand H, Denger S, et al. (2003) Cyclic, proteasome-mediated turnover of unliganded and liganded ERα on responsive promoters is an integral feature of estrogen signaling. Mol Cell 11: 695–707. doi: 10.1016/s1097-2765(03)00090-x
[9]
Diamanti-Kandarakis E, Bourguignon JP, Giudice LC, Hauser R, Prins GS, et al. (2009) Endocrine-disrupting chemicals: an Endocrine Society scientific statement. Endocr Rev 30: 293–342. doi: 10.1210/er.2009-0002
[10]
Zoeller RT, Brown TR, Doan LL, Gore AC, Skakkebaek NE, et al. (2012) Endocrine-disrupting chemicals and public health protection: a statement of principles from The Endocrine Society. Endocrinology 153: 4097–4110. doi: 10.1210/en.2012-1422
[11]
Bolli A, Galluzzo P, Ascenzi P, Del Pozzo G, Manco I, et al. (2008) Laccase treatment impairs bisphenol A-induced cancer cell proliferation affecting estrogen receptor α-dependent rapid signals. IUBMB Life 60: 843–852. doi: 10.1002/iub.130
[12]
Bulzomi P, Bolli A, Galluzzo P, Leone S, Acconcia F, et al. (2010) Naringenin and 17 β-estradiol coadministration prevents hormone-induced human cancer cell growth. IUBMB Life 62: 51–60. doi: 10.1002/iub.279
[13]
Bulzomi P, Galluzzo P, Bolli A, Leone S, Acconcia F, et al. (2012) The pro-apoptotic effect of quercetin in cancer cell lines requires ERβ-dependent signals. J Cell Physiol 227: 1891–1898. doi: 10.1002/jcp.22917
[14]
Ali S, Metzger D, Bornert JM, Chambon P (1993) Modulation of transcriptional activation by ligand-dependent phosphorylation of the human oestrogen receptor A/B region. EMBO J 12: 1153–1160.
[15]
Galluzzo P, Ascenzi P, Bulzomi P, Marino M (2008) The nutritional flavanone naringenin triggers antiestrogenic effects by regulating estrogen receptor α-palmitoylation. Endocrinology 149: 2567–2575. doi: 10.1210/en.2007-1173
[16]
Totta P, Acconcia F, Leone S, Cardillo I, Marino M (2004) Mechanisms of naringenin-induced apoptotic cascade in cancer cells: Involvement of estrogen receptor α and β signalling. IUBMB Life 56: 491–499. doi: 10.1080/15216540400010792
[17]
Acconcia F, Totta P, Ogawa S, Cardillo I, Inoue S, et al. (2005) Survival versus apoptotic 17beta-estradiol effect: role of ER alpha and ER beta activated non-genomic signaling. J Cell Physiol 203: 193–201. doi: 10.1002/jcp.20219
[18]
Lange CA, Shen T, Horwitz KB (2000) Phosphorylation of human progesterone receptors at serine-294 by mitogen-activated protein kinase signals their degradation by the 26S proteasome. Proc Natl Acad Sci U S A 97: 1032–1037. doi: 10.1073/pnas.97.3.1032
[19]
Manavathi B, Dey O, Gajulapalli VN, Bhatia RS, Bugide S, et al. (2012) Derailed Estrogen Signaling and Breast Cancer: An Authentic Couple. Endocr Rev 34: 1–32. doi: 10.1210/er.2011-1057
[20]
Li Y, Kong D, Wang Z, Sarkar FH (2010) Regulation of microRNAs by natural agents: an emerging field in chemoprevention and chemotherapy research. Pharm Res 27: 1027–1041. doi: 10.1007/s11095-010-0105-y
[21]
Bhatt S, Xiao Z, Meng Z, Katzenellenbogen BS (2012) Phosphorylation by p38 mitogen-activated protein kinase promotes estrogen receptor alpha turnover and functional activity via the SCF(Skp2) proteasomal complex. Mol Cell Biol 32: 1928–1943. doi: 10.1128/mcb.06561-11
[22]
Lee H, Bai W (2002) Regulation of estrogen receptor nuclear export by ligand-induced and p38-mediated receptor phosphorylation. Mol Cell Biol 22: 5835–5845. doi: 10.1128/mcb.22.16.5835-5845.2002
[23]
Vandenberg LN, Colborn T, Hayes TB, Heindel JJ, Jacobs DR Jr, et al. (2012) Hormones and endocrine-disrupting chemicals: low-dose effects and nonmonotonic dose responses. Endocr Rev 33: 378–455. doi: 10.1210/er.2011-1050
[24]
Bolli A, Bulzomi P, Galluzzo P, Acconcia F, Marino M (2010) Bisphenol A Impairs Estradiol-induced Protective Effects Against DLD-1 Colon Cancer Cell Growth. IUBMB Life 62: 684–687. doi: 10.1002/iub.370
[25]
Bulzomi P, Bolli A, Galluzzo P, Acconcia F, Ascenzi P, et al. (2012) The naringenin-induced proapoptotic effect in breast cancer cell lines holds out against a high bisphenol a background. IUBMB Life 64: 690–696. doi: 10.1002/iub.1049
[26]
Matthews J, Gustafsson JA (2003) Estrogen signaling: a subtle balance between ER α and ER β. Mol Interv 3: 281–292. doi: 10.1124/mi.3.5.281