[1] | Baylor DA, Fuortes MG, O’Bryan PM (1971) Receptive fields of cones in the retina of the turtle. J Physiol 214: 265–294.
|
[2] | Verweij J, Hornstein EP, Schnapf JL (2003) Surround antagonism in macaque cone photoreceptors. J Neurosci 23: 10249–10257.
|
[3] | Verweij J, Kamermans M, Spekreijse H (1996) Horizontal cells feed back to cones by shifting the cone calcium-current activation range. Vision Res 36: 3943–3953. doi: 10.1016/s0042-6989(96)00142-3
|
[4] | Packer OS, Verweij J, Li PH, Schnapf JL, Dacey DM (2010) Blue-yellow opponency in primate S cone photoreceptors. J Neurosci 30: 568–572. doi: 10.1523/jneurosci.4738-09.2010
|
[5] | Dacey DM, Packer OS, Diller LC, Brainard DH, Peterson BB, et al. (2000) Center surround receptive field structure of cone bipolar cells in primate retina. Vision Res 40: 1801–1811. doi: 10.1016/s0042-6989(00)00039-0
|
[6] | Kaneko A (1973) Receptive field organization of bipolar and amacrine cells in the goldfish retina. JPhysiol (Lond) 235: 133–153.
|
[7] | Dacheux RF, Miller RF (1981) An intracellular electrophysiological study of the ontogeny of functional synapses in the rabbit retina. I. Receptors, horizontal, and bipolar cells. J Comp Neurol 198: 307–326. doi: 10.1002/cne.901980209
|
[8] | Fahey PK, Burkhardt DA (2003) Center-surround organization in bipolar cells: symmetry for opposing contrasts. Vis Neurosci 20: 1–10. doi: 10.1017/s0952523803201012
|
[9] | Kuffler SW (1953) Discharge patterns and functional organization of mammalian retina. J Neurophysiol 16: 37–68.
|
[10] | Barlow HB, Fitzhugh R, Kuffler SW (1957) Change of organization in the receptive fields of the cat’s retina during dark adaptation. J Physiol 137: 338–354.
|
[11] | Enroth-Cugell C, Lennie P (1975) The control of retinal ganglion cell discharge by receptive field surrounds. JPhysiol (Lond) 247: 551–578.
|
[12] | Davenport CM, Detwiler PB, Dacey DM (2008) Effects of pH buffering on horizontal and ganglion cell light responses in primate retina: evidence for the proton hypothesis of surround formation. J Neurosci 28: 456–464. doi: 10.1523/jneurosci.2735-07.2008
|
[13] | Picaud S, Pattnaik B, Hicks D, Forster V, Fontaine V, et al. (1998) GABAA and GABAC receptors in adult porcine cones: evidence from a photoreceptor-glia co-culture model. JPhysiol (Lond) 513: 33–42. doi: 10.1111/j.1469-7793.1998.033by.x
|
[14] | Kaneko A, Tachibana M (1986) Effects of gamma-aminobutyric acid on isolated cone photoreceptors of the turtle retina. J Physiol 373: 443–461.
|
[15] | Lee H, Brecha NC (2010) Immunocytochemical evidence for SNARE protein-dependent transmitter release from guinea pig horizontal cells. Eur J Neurosci 31: 1388–1401. doi: 10.1111/j.1460-9568.2010.07181.x
|
[16] | Guo C, Hirano AA, Stella SL Jr, Bitzer M, Brecha NC (2010) Guinea pig horizontal cells express GABA, the GABA-synthesizing enzyme GAD 65, and the GABA vesicular transporter. J Comp Neurol 518: 1647–1669. doi: 10.1002/cne.22294
|
[17] | Jellali A, Stussi-Garaud C, Gasnier B, Rendon A, Sahel JA, et al. (2002) Cellular localization of the vesicular inhibitory amino acid transporter in the mouse and human retina. J Comp Neurol 449: 76–87. doi: 10.1002/cne.10272
|
[18] | Kao Y, Lassova L, Bar-Yehuda T, Edwards R, Sterling P, et al. (2004) Evidence that certain retinal bipolar cells use both glutamate and GABA. J Comp Neurol 478: 207–218. doi: 10.1002/cne.20221
|
[19] | Kalloniatis M, Marc RE, Murry RF (1996) Amino acid signatures in the primate retina. JNeurosci 16: 6807–6829.
|
[20] | Haverkamp S, Grünert U, W?ssle H (2000) The cone pedicle, a complex synapse in the retina. Neuron 27: 85–95. doi: 10.1016/s0896-6273(00)00011-8
|
[21] | Cueva JG, Haverkamp S, Reimer RJ, Edwards R, W?ssle H, et al. (2002) Vesicular gamma-aminobutyric acid transporter expression in amacrine and horizontal cells. J Comp Neurol 445: 227–237. doi: 10.1002/cne.10166
|
[22] | Hirano AA, Brandstatter JH, Morgans CW, Brecha NC (2011) SNAP25 expression in mammalian retinal horizontal cells. J Comp Neurol 519: 972–988. doi: 10.1002/cne.22562
|
[23] | Deniz S, Wersinger E, Schwab Y, Mura C, Erdelyi F, et al. (2011) Mammalian retinal horizontal cells are unconventional GABAergic neurons. J Neurochem 116: 350–362. doi: 10.1111/j.1471-4159.2010.07114.x
|
[24] | Herrmann R, Heflin SJ, Hammond T, Lee B, Wang J, et al. (2011) Rod vision is controlled by dopamine-dependent sensitization of rod bipolar cells by GABA. Neuron 72: 101–110. doi: 10.1016/j.neuron.2011.07.030
|
[25] | W?ssle H, Chun MH (1989) GABA-like immunoreactivity in the cat retina: Light microscopy. JCompNeurol 279: 43–54. doi: 10.1002/cne.902790105
|
[26] | Agardh E, Ehinger B, Wu J-Y (1987) GABA and GAD-like immunoreactivity in the primate retina. Histochemistry 86: 485–490. doi: 10.1007/bf00500621
|
[27] | Grünert U, W?ssle H (1990) GABA-like immunoreactivity in the macaque monkey retina: A light and electron microscopic study. JCompNeurol 297: 509–524. doi: 10.1002/cne.902970405
|
[28] | Thoreson WB, Burkhardt DA (1990) Effects of synaptic blocking agents on the depolarizing responses of turtle cones evoked by surround illumination. VisNeurosci 5: 571–583. doi: 10.1017/s0952523800000730
|
[29] | Klaassen LJ, Fahrenfort I, Kamermans M (2012) Connexin hemichannel mediated ephaptic inhibition in the retina. Brain Res 1487: 25–38. doi: 10.1016/j.brainres.2012.04.059
|
[30] | Hirasawa H, Yamada M, Kaneko A (2012) Acidification of the synaptic cleft of cone photoreceptor terminal controls the amount of transmitter release, thereby forming the receptive field surround in the vertebrate retina. J Physiol Sci 62: 359–375. doi: 10.1007/s12576-012-0220-0
|
[31] | Dowling JE, Brown JE, Major D (1966) Synapses of horizontal cells in rabbit and cat retinas. Science 153: 1639–1641. doi: 10.1126/science.153.3744.1639
|
[32] | Kolb H (1977) The organization of the outer plexiform layer in the retina of the cat: electron microscopic observations. J Neurocytol 6: 131–153. doi: 10.1007/bf01261502
|
[33] | Fisher SK, Boycott BB (1974) Synaptic connections made by horizontal cells within the outer plexiform layer of the retina of the cat and the rabbit. Proc R Soc Lond B Biol Sci 186: 317–331. doi: 10.1098/rspb.1974.0052
|
[34] | Missotten L (1965) The Ultrastructure of the Human Retina. Brussels: Editions Arscia SA.
|
[35] | Dowling JE, Boycott BB (1966) Organization of the primate retina: electron microscopy. Proc R Soc Lond B Biol Sci 166: 80–111. doi: 10.1098/rspb.1966.0086
|
[36] | Puller C, de Sevilla Müller LP, Janssen-Bienhold U, Haverkamp S (2009) ZO-1 and the spatial organization of gap junctions and glutamate receptors in the outer plexiform layer of the mammalian retina. J Neurosci 29: 6266–6275. doi: 10.1523/jneurosci.5867-08.2009
|
[37] | Vardi N, Sterling P (1994) Subcellular localization of GABAA receptor on bipolar cells in macaque and human retina. Vision Res 34: 1235–1246. doi: 10.1016/0042-6989(94)90198-8
|
[38] | Vardi N, Zhang LL, Payne JA, Sterling P (2000) Evidence that different cation chloride cotransporters in retinal neurons allow opposite responses to GABA. J Neurosci 20: 7657–7663.
|
[39] | Miller RF, Dacheux RF (1983) Intracellular chloride in retinal neurons: measurement and meaning. Vision Res 23: 399–411. doi: 10.1016/0042-6989(83)90087-1
|
[40] | Duebel J, Haverkamp S, Schleich W, Feng G, Augustine GJ, et al. (2006) Two-photon imaging reveals somatodendritic chloride gradient in retinal ON-type bipolar cells expressing the biosensor Clomeleon. Neuron 49: 81–94. doi: 10.1016/j.neuron.2005.10.035
|
[41] | Varela C, Blanco R, De la Villa P (2005) Depolarizing effect of GABA in rod bipolar cells of the mouse retina. Vision Res 45: 2659–2667. doi: 10.1016/j.visres.2005.03.020
|
[42] | Chaffiol AJ, Cao Y, Ishii M, Ribelayga C, Mangel SC (2012) Light/Dark Adaptive Regulation of GABAA Receptor and NKCC Expression and Activity Modulates Direct, GABA-mediated Horizontal Cell Signaling to ON-Cone Bipolar Cells. Invest Ophthalmol Vis Sci 53: 4306.
|
[43] | Chiang PH, Wu PY, Kuo TW, Liu YC, Chan CF, et al. (2012) GABA is depolarizing in hippocampal dentate granule cells of the adolescent and adult rats. J Neurosci 32: 62–67. doi: 10.1523/jneurosci.3393-11.2012
|
[44] | Peichl L (2010) Morphology of Interneurons: Horizontal Cells. DA Dartt, editor Encyclopedia of the Eye, Vol 3 Oxford: Academic Press.
|
[45] | W?ssle H, Dacey DM, Haun T, Haverkamp S, Grünert U, et al. (2000) The mosaic of horizontal cells in the macaque monkey retina: with a comment on biplexiform ganglion cells. Vis Neurosci 17: 591–608. doi: 10.1017/s0952523800174097
|
[46] | W?ssle H, Boycott BB, R?hrenbeck J (1989) Horizontal Cells in the Monkey Retina: Cone connections and dendritic network. Eur J Neurosci 1: 421–435. doi: 10.1111/j.1460-9568.1989.tb00350.x
|
[47] | Ahnelt P, Kolb H (1994) Horizontal cells and cone photoreceptors in primate retina: A golgi-light microscopic study of spectral connectivity. JCompNeurol 343: 387–405. doi: 10.1002/cne.903430305
|
[48] | Ahnelt P, Kolb H (1994) Horizontal cells and cone photoreceptors in human retina: A golgi-electron microscopic study of spectral connectivity. JCompNeurol 343: 406–427. doi: 10.1002/cne.903430306
|
[49] | Dacey DM, Lee BB, Stafford DK, Pokorny J, Smith VC (1996) Horizontal cells of the primate retina: cone specificity without spectral opponency. Science 271: 656–659. doi: 10.1126/science.271.5249.656
|
[50] | Goodchild AK, Chan TL, Grünert U (1996) Horizontal cell connections with short-wavelength-sensitive cones in macaque monkey retina. Vis Neurosci 13: 833–845. doi: 10.1017/s0952523800009093
|
[51] | Chan TL, Grünert U (1998) Horizontal cell connections with short wavelength-sensitive cones in the retina: A comparison between New World and Old World primates. JCompNeurol 393: 196–209. doi: 10.1002/(sici)1096-9861(19980406)393:2<196::aid-cne5>3.3.co;2-1
|
[52] | Kolb H, Mariani A, Gallego A (1980) A second type of horizontal cell in the monkey retina. JCompNeurol 189: 31–44. doi: 10.1002/cne.901890103
|
[53] | Sandmann D, Boycott BB, Peichl L (1996) Blue cone horizontal cells in the retinae of horses and other equidae.. JNeurosci 16: 3381–3396.
|
[54] | Puller C, Haverkamp S (2011) Bipolar cell pathways for color vision in non-primate dichromats. Vis Neurosci 28: 51–60. doi: 10.1017/s0952523810000271
|
[55] | Linberg KA, Suemune S, Fisher SK (1996) Retinal neurons of the California ground squirrel, Spermophilus beecheyi: A golgi study. JCompNeurol 365: 173–216. doi: 10.1002/(sici)1096-9861(19960205)365:2<173::aid-cne1>3.0.co;2-2
|
[56] | Crook JD, Manookin MB, Packer OS, Dacey DM (2011) Horizontal cell feedback without cone type-selective inhibition mediates “red-green” color opponency in midget ganglion cells of the primate retina. J Neurosci 31: 1762–1772. doi: 10.1523/jneurosci.4385-10.2011
|
[57] | Hirano AA, Brandstatter JH, Vila A, Brecha NC (2007) Robust syntaxin-4 immunoreactivity in mammalian horizontal cell processes. Vis Neurosci 24: 489–502. doi: 10.1017/s0952523807070198
|
[58] | Südhof TC, Rizo J (2011) Synaptic vesicle exocytosis. Cold Spring Harb Perspect Biol 3.
|
[59] | Sherry DM, Mitchell R, Standifer KM, du Plessis B (2006) Distribution of plasma membrane-associated syntaxins 1 through 4 indicates distinct trafficking functions in the synaptic layers of the mouse retina. BMC Neurosci 7: 54.
|
[60] | Berglund K, Schleich W, Krieger P, Loo LS, Wang D, et al. (2006) Imaging synaptic inhibition in transgenic mice expressing the chloride indicator, Clomeleon. Brain Cell Biol 35: 207–228. doi: 10.1007/s11068-008-9019-6
|
[61] | Haverkamp S, W?ssle H, Duebel J, Kuner T, Augustine GJ, et al. (2005) The primordial, blue-cone color system of the mouse retina. J Neurosci 25: 5438–5445. doi: 10.1523/jneurosci.1117-05.2005
|
[62] | Benke D, Mertens S, Trzeciak A, Gillessen D, Mohler H (1991) GABAA receptors display association of gamma 2-subunit with alpha 1- and beta 2/3-subunits. J Biol Chem 266: 4478–4483.
|
[63] | Schoch P, Richards JG, Haring P, Takacs B, Stahli C, et al. (1985) Co-localization of GABA receptors and benzodiazepine receptors in the brain shown by monoclonal antibodies. Nature 314: 168–171. doi: 10.1038/314168a0
|
[64] | Enz R, Brandst?tter JH, W?ssle H, Bormann J (1996) Immunocytochemical localization of the GABAc receptor rho subunits in the mammalian retina. JNeurosci 16: 4479–4490.
|
[65] | Delgado LM, Vielma AH, Kahne T, Palacios AG, Schmachtenberg O (2009) The GABAergic system in the retina of neonate and adult Octodon degus, studied by immunohistochemistry and electroretinography. J Comp Neurol 514: 459–472. doi: 10.1002/cne.22023
|
[66] | W?ssle H, Puller C, Müller F, Haverkamp S (2009) Cone contacts, mosaics, and territories of bipolar cells in the mouse retina. J Neurosci 29: 106–117. doi: 10.1523/jneurosci.4442-08.2009
|
[67] | Breuninger T, Puller C, Haverkamp S, Euler T (2011) Chromatic bipolar cell pathways in the mouse retina. J Neurosci 31: 6504–6517. doi: 10.1523/jneurosci.0616-11.2011
|
[68] | Dumitrescu ON, Pucci FG, Wong KY, Berson DM (2009) Ectopic retinal ON bipolar cell synapses in the OFF inner plexiform layer: contacts with dopaminergic amacrine cells and melanopsin ganglion cells. J Comp Neurol 517: 226–244. doi: 10.1002/cne.22158
|
[69] | Puller C, Haverkamp S (2011) Cell-type-specific localization of protocadherin beta16 at AMPA and AMPA/Kainate receptor-containing synapses in the primate retina. J Comp Neurol 519: 467–479. doi: 10.1002/cne.22528
|
[70] | Lytle C, Xu JC, Biemesderfer D, Forbush B 3rd (1995) Distribution and diversity of Na-K-Cl cotransport proteins: a study with monoclonal antibodies. Am J Physiol 269: C1496–1505.
|
[71] | Zhang LL, Fina ME, Vardi N (2006) Regulation of KCC2 and NKCC during development: membrane insertion and differences between cell types. J Comp Neurol 499: 132–143. doi: 10.1002/cne.21100
|
[72] | Li B, McKernan K, Shen W (2008) Spatial and temporal distribution patterns of Na-K-2Cl cotransporter in adult and developing mouse retinas. Vis Neurosci 25: 109–123. doi: 10.1017/s0952523808080164
|
[73] | Zhang LL, Delpire E, Vardi N (2007) NKCC1 does not accumulate chloride in developing retinal neurons. J Neurophysiol 98: 266–277. doi: 10.1152/jn.00288.2007
|
[74] | Williams JR, Sharp JW, Kumari VG, Wilson M, Payne JA (1999) The neuron-specific K-Cl cotransporter, KCC2. Antibody development and initial characterization of the protein. J Biol Chem 274: 12656–12664. doi: 10.1074/jbc.274.18.12656
|
[75] | MacNeil MA, Gaul PA (2008) Biocytin wide-field bipolar cells in rabbit retina selectively contact blue cones. J Comp Neurol 506: 6–15. doi: 10.1002/cne.21491
|
[76] | Puller C, Ondreka K, Haverkamp S (2011) Bipolar cells of the ground squirrel retina. J Comp Neurol 519: 759–774. doi: 10.1002/cne.22546
|
[77] | R?hrenbeck J, W?ssle H, Boycott BB (1989) Horizontal cells in the monkey retina: immunocytochemical staining with antibodies against calcium binding proteins. EurJNeurosci 1: 407–420. doi: 10.1111/j.1460-9568.1989.tb00349.x
|
[78] | Chiquet C, Dkhissi-Benyahya O, Cooper H (2005) Calcium-binding protein distribution in the retina of strepsirhine and haplorhine primates. Brain Res Bull 68: 185–194. doi: 10.1016/j.brainresbull.2005.08.010
|
[79] | DeMonasterio FM, Schein SJ, McCrane EP (1981) Staining of blue-sensitive cones of the macaque retina by a fluorescent dye. Science 213: 1278–1281. doi: 10.1126/science.7268439
|
[80] | Martin PR, Grünert U (1999) Analysis of the short wavelength-sensitive (“blue”) cone mosaic in the primate retina: Comparison of New World and Old World monkeys. JCompNeurol 406: 1–14. doi: 10.1002/(sici)1096-9861(19990329)406:1<1::aid-cne1>3.0.co;2-1
|
[81] | Peichl L, González-Soriano J (1994) Morphological types of horizontal cell in rodent retinae: A comparison of rat, mouse, gerbil, and guinea pig. VisNeurosci 11: 501–517. doi: 10.1017/s095252380000242x
|
[82] | Li W, DeVries SH (2004) Separate blue and green cone networks in the mammalian retina. Nat Neurosci 7: 751–756. doi: 10.1038/nn1275
|
[83] | Kennedy MJ, Davison IG, Robinson CG, Ehlers MD (2010) Syntaxin-4 defines a domain for activity-dependent exocytosis in dendritic spines. Cell 141: 524–535. doi: 10.1016/j.cell.2010.02.042
|
[84] | Haverkamp S, Grünert U, W?ssle H (2001) Localization of kainate receptors at the cone pedicles of the primate retina. J Comp Neurol 436: 471–486. doi: 10.1002/cne.1081
|
[85] | Haverkamp S, Grünert U, W?ssle H (2001) The synaptic architecture of AMPA receptors at the cone pedicle of the primate retina. J Neurosci 21: 2488–2500.
|
[86] | Puller C, Haverkamp S, Grünert U (2007) OFF midget bipolar cells in the retina of the marmoset, Callithrix jacchus, express AMPA receptors. J Comp Neurol 502: 442–454. doi: 10.1002/cne.21315
|
[87] | Herr S, Klug K, Sterling P, Schein S (2003) Inner S-cone bipolar cells provide all of the central elements for S cones in macaque retina. J Comp Neurol 457: 185–201. doi: 10.1002/cne.10553
|
[88] | Kouyama N, Marshak DW (1992) Bipolar cells specific for blue cones in the macaque retina. JNeurosci 12: 1233–1252.
|
[89] | Calkins DJ, Tsukamoto Y, Sterling P (1998) Microcircuitry and mosaic of a blue-yellow ganglion cell in the primate retina. JNeurosci 18: 3373–3385.
|
[90] | Dacey DM, Lee BB (1994) The ‘blue-on’ opponent pathway in primate retina originates from a distinct bistratified ganglion cell type. Nature 367: 731–735. doi: 10.1038/367731a0
|
[91] | Ghosh KK, Grünert U (1999) Synaptic input to small bistratified (blue-ON) ganglion cells in the retina of a new world monkey, the marmoset Callithrix jacchus. J Comp Neurol 413: 417–428. doi: 10.1002/(sici)1096-9861(19991025)413:3<417::aid-cne5>3.0.co;2-h
|
[92] | Percival KA, Jusuf PR, Martin PR, Grünert U (2009) Synaptic inputs onto small bistratified (blue-ON/yellow-OFF) ganglion cells in marmoset retina. J Comp Neurol 517: 655–669. doi: 10.1002/cne.22183
|
[93] | Crook JD, Davenport CM, Peterson BB, Packer OS, Detwiler PB, et al. (2009) Parallel ON and OFF cone bipolar inputs establish spatially coextensive receptive field structure of blue-yellow ganglion cells in primate retina. J Neurosci 29: 8372–8387. doi: 10.1523/jneurosci.1218-09.2009
|
[94] | Field GD, Sher A, Gauthier JL, Greschner M, Shlens J, et al. (2007) Spatial properties and functional organization of small bistratified ganglion cells in primate retina. J Neurosci 27: 13261–13272. doi: 10.1523/jneurosci.3437-07.2007
|
[95] | Dacey DM (1999) Primate retina: cell types, circuits and color opponency. Prog Retin Eye Res 18: 737–763. doi: 10.1016/s1350-9462(98)00013-5
|
[96] | Dacey DM (1993) Morphology of a small-field bistratified ganglion cell type in the macaque and human retina. Vis Neurosci 10: 1081–1098. doi: 10.1017/s0952523800010191
|
[97] | McMahon MJ, Packer OS, Dacey DM (2004) The classical receptive field surround of primate parasol ganglion cells is mediated primarily by a non-GABAergic pathway. J Neurosci 24: 3736–3745. doi: 10.1523/jneurosci.5252-03.2004
|
[98] | Schwartz EA (1987) Depolarization without calcium can release y-aminobutyric acid from a retinal neuron. Science 238: 350–355. doi: 10.1126/science.2443977
|
[99] | Pow DV, Baldridge W, Crook DK (1996) Activity-dependent transport of GABA analogues into specific cell types demonstrated at high resolution using a novel immunocytochemical strategy. Neuroscience 73: 1129–1143. doi: 10.1016/0306-4522(96)00097-8
|