[1] | Kopecz K (1995) Saccadic reaction times in gap/overlap paradigms: a model based on integration of intentional and visual information on neural, dynamic fields. Vision Res 35(20): 2911–2925. doi: 10.1016/0042-6989(95)00066-9
|
[2] | Forbes K, Klein RM (1996) The magnitude of the fixation offset effect with endogenously and exogenously controlled saccades. J Cogn Neurosci 8(4): 344–352. doi: 10.1162/jocn.1996.8.4.344
|
[3] | Klein RM, Shore DI (2000) Relationships among modes of visual orienting In: Monsell S, Driver J, editors. Attention and performance: XVIII Control of cognitive processes,. Cambridge MA: MIT Press. 195–208.
|
[4] | Mort DJ, Perry RJ, Mannan SK, Hodgson TL, Anderson E, et al. (2003) Differential cortical activation during voluntary and reflexive saccades in man. Neuroimage 18(2): 231–246. doi: 10.1016/s1053-8119(02)00028-9
|
[5] | Munoz DP, Everling S (2004) Look away: the anti-saccade task and the voluntary control of eye movement. Nat Rev Neurosci 5(3): 218–228. doi: 10.1038/nrn1345
|
[6] | Walker R, McSorley E (2006) The parallel programming of voluntary and reflexive saccades. Vision Res 46(13: 2082–93. doi: 10.1016/j.visres.2005.12.009
|
[7] | Kennard C, Mannan SK, Nachev P, Parton A, Mort DJ, et al. (2005) Cognitive processes in saccade generation. Ann N Y Acad Sci 1039(1): 176–83. doi: 10.1196/annals.1325.017
|
[8] | Walker R, Walker DG, Husain M, Kennard C (2000) Control of voluntary and reflexive saccades. Exp Brain Res 130(4): 540–544. doi: 10.1007/s002219900285
|
[9] | Matsumora T, Koida K, Komatsu H (2008) Relationship Between Color Discrimination and Neural Responses in the Inferior Temporal Cortex of the Monkey. J Neurophysiol 100: 3361–3374. doi: 10.1152/jn.90551.2008
|
[10] | Stanford TR, Shankar S, Massoglia DP, Costello GM, Salinas E (2010) Perceptual decision making in less than 30 milliseconds. Nat Neurosci 13(3): 379–385. doi: 10.1038/nn.2485
|
[11] | Walker R, Deubel H, Schneider WX, Findlay JM (1997) Effect of Remote Distractors on Saccade Programming: Evidence for an Extended Fixation Zone. J Neurophysiol 78(2): 1108–1119.
|
[12] | Walker R, Kentridge RW, Findlay JM (1995) Independent contributions of the orienting of attention, fixation offset and bilateral stimulation on human saccadic latencies. Exp Brain Res 103: 294–310. doi: 10.1007/bf00231716
|
[13] | Watanabe K, Funahashi S (2007) Prefrontal delay-period activity reflects the decision process of a saccade direction during a free-choice ODR task. Cereb Cortex 17: 88–100. doi: 10.1093/cercor/bhm102
|
[14] | Reingold EM, Stampe DM (2002) Saccadic inhibition in voluntary and reflexive saccades. J Cogn Neurosci 14(3): 371–388. doi: 10.1162/089892902317361903
|
[15] | Cotti J, Panouilleres M, Munoz DP, Vercher J-L, Pélisson D, et al. (2009) Adaptation of reactive and voluntary saccades: different patterns of adaptation revealed in the antisaccade task. J Physiol 587(1): 127–138. doi: 10.1113/jphysiol.2008.159459
|
[16] | Wurtz RH, Goldberg ME (1972) Activity of superior colliculus in behaving monkey 3 Cells discharging before eye movements. J Neurophysiol 35: 575–586.
|
[17] | Leach JCD, Carpenter RHS (2001) Saccadic choice with asynchronous targets: evidence for independent randomisation. Vision Res 41: 3437–3445. doi: 10.1016/s0042-6989(01)00059-1
|
[18] | Nachev P, Rees G, Parton A, Kennard C, Husain M (2005) Volition and Conflict in Human Medial Frontal Cortex. Curr Biol 15(1): 122–128. doi: 10.1016/j.cub.2005.01.006
|
[19] | Henik A, Rafal R, Rhodes D (1994) Endogenously generated and visually guided saccades after lesions of the human frontal eye fields. J Cogn Neurosci 6(4): 400–411. doi: 10.1162/jocn.1994.6.4.400
|
[20] | Pierrot-Deseilligny C, Rivaud S, Gaymard B, Agid Y (1991) Cortical control of reflexive visually-guided saccades. Brain 114 (3): 1473–85. doi: 10.1093/brain/114.3.1473
|
[21] | Pierrot-Deseilligny C, Rivaud S, Gaymard B, Agid Y (1991) Cortical control of memory-guided saccades in man. Exp Brain Res 83: 607–617. doi: 10.1007/bf00229839
|
[22] | Schiller PH, Chou I (2000) The effects of anterior arcuate and dorsomedial frontal cortex lesions on visually guided eye movements: 2. Paired and multiple targets. Vision Res 40(10–12): 1627–1638. doi: 10.1016/s0042-6989(00)00058-4
|
[23] | Brown MR, DeSouza JF, Goltz HC, Ford K, Menon RS, et al. (2004) Comparison of memory- and visually guided saccades using event-related fMRI. J Neurophysiol 91(2): 873–889. doi: 10.1152/jn.00382.2003
|
[24] | Nachev P, Kennard C, Husain M (2008) Functional role of the supplementary and pre-supplementary motor areas. Nat Rev Neurosci 9(11): 856–69. doi: 10.1038/nrn2478
|
[25] | Schall JD (2001) Neural basis of deciding, choosing and acting. Nat Rev Neurosci 2(1): 33–42. doi: 10.1038/35049054
|
[26] | Gaymard B, Ploner CJ, Rivaud-Péchoux S, Pierrot-Deseilligny C (1999) The frontal eye field is involved in spatial short-term memory but not in reflexive saccade inhibition. Exp Brain Res 129: 288–301. doi: 10.1007/s002210050899
|
[27] | Rolfs M, Vitu F (2007) On the limited role of target onset in the gap task: Support for the motor-preparation hypothesis. J Vision 7: 1–20. doi: 10.1167/7.10.7
|
[28] | Saslow MG (1967) Effects of components of displacement-step stimuli upon latency of saccadic eye movements. J Opt Soc Am 57: 1024–1029. doi: 10.1364/josa.57.001024
|
[29] | Bompas A, Sumner P (2011) Saccadic Inhibition Reveals the Timing of Automatic and Voluntary Signals in the Human Brain. J Neurosci 31(35): 12501–12512. doi: 10.1523/jneurosci.2234-11.2011
|
[30] | Reingold EM, Stampe DM (2004) Saccadic inhibition in reading. J Exp Psychol Hum Percept Perform 30(1): 194–211. doi: 10.1037/0096-1523.30.1.194
|
[31] | Fischer B, Weber H, Biscaldi M, Aiple F, Otto P, Stuhr V (1993) Separate populations of visually guided saccades in humans: reaction times and amplitudes. Exp Brain Res 4: 528–541. doi: 10.1007/bf00229043
|
[32] | Kirchner H, Thorpe SJ (2006) Ultra-rapid object detection with saccadic eye movements: visual processing speed revisited. Vision Res 46(11): 1762–1776. doi: 10.1016/j.visres.2005.10.002
|
[33] | Fischer B, Rampsperger E (1984) Human express saccades: extremely short reaction times of goal directed eye movements. Exp Brain Res 57: 191–195. doi: 10.1007/bf00231145
|
[34] | Cardoso-Leite P, Gorea A, Mamassian P (2007) Temporal order judgment and simple reaction times: Evidence for a common processing system. J Vision 7: 1–14. doi: 10.1167/7.6.11
|
[35] | Otto TU, Mamassian P (2012) Noise and correlations in parallel perceptual decision making. Curr Biol 22(15): 1391–1396. doi: 10.1016/j.cub.2012.05.031
|
[36] | Boucher L, Palmeri TJ, Logan GD, Schall JD (2007) Inhibitory control in mind and brain: an interactive race model of countermanding saccades. Psychol Rev 114(2): 376–97. doi: 10.1037/0033-295x.114.2.376
|
[37] | Purcell BA, Heitz RP, Cohen JY, Schall JD, Logan GD, et al. (2010) Neurally constrained modeling of perceptual decision making. Psychol Rev 117(4): 1113–1143. doi: 10.1037/a0020311
|
[38] | Trappenberg TP, Dorris MC, Munoz DP, Klein RM (2001) A model of saccade initiation based on the competitive integration of exogenous and endogenous signals in the superior colliculus. J Cogn Neurosci 13(2): 256–271. doi: 10.1162/089892901564306
|
[39] | Marino RA, Trappenberg TP, Dorris MC, Munoz DP (2012) Spatial interactions in the superior colliculus predict saccade behavior in a neural field model. J Cogn Neurosci 24(2): 315–336. doi: 10.1162/jocn_a_00139
|
[40] | D L Sparks and R Hartwich-Young (1989) The deep layers of the superior colliculus. In Wurtz RH, Goldberg ME, editors. The neurobiology of saccadic eye-movements. Amsterdam: Elsevier. 213–255.
|
[41] | Gezeck S, Fischer B, Timmer J (1997) Saccadic reaction times: a statistical analysis of multimodal distributions. Vision Res 37(15): 2119–2131. doi: 10.1016/s0042-6989(97)00022-9
|
[42] | Gezeck S, Timmer J (1998) Detecting multimodality in saccadic reaction time distributions in gap and overlap tasks. Biol Cybern 78(4): 293–305. doi: 10.1007/s004220050434
|
[43] | Dorris MC, Munoz DP (1995) A neural correlate for the gap effect on saccadic reaction times in monkey. J Neurophysiol 73(6): 2558–2562.
|
[44] | Dorris MC, Paré M, Munoz DP (1997) Neuronal activity in monkey superior colliculus related to the initiation of saccadic eye movements. J Neurosci 17(21): 8566–8579.
|
[45] | Munoz DP, Istvan PJ (1998) Lateral inhibitory interactions in the intermediate layers of the monkey superior colliculus. J Neurophysiol 79(3): 1193–209.
|
[46] | Brainard DH (1997) The Psychophysics Toolbox. Spatial Vis 10: 433–436. doi: 10.1163/156856897x00357
|
[47] | Pelli DG (1997) The VideoToolbox software for visual psychophysics: Transforming numbers into movies. Spatial Vis 10: 437–442. doi: 10.1163/156856897x00366
|
[48] | Cornelissen FW, Peters EM, Palmer J (2002) The Eyelink Toolbox: eye tracking with MATLAB and the Psychophysics Toolbox. Behav Res Methods, Instruments, Comput 34(4): 613–617. doi: 10.3758/bf03195489
|
[49] | Boch R, Fischer B, Rampsperger E (1984) Express-Saccades of the monkey: reaction times versus intensity, size, duration, eccentricity of their targets. Exp Brain Res 55: 223–231. doi: 10.1007/bf00237273
|
[50] | Fischer B (1987) The Preparation of Visually Guided Saccades. Rev Physiol Biochem Pharmacol 106: 1–35. doi: 10.1007/bfb0027574
|
[51] | Fischer B, Gezeck S, Huber W (1995) The three-loop model: a neural network for the generation of saccadic reaction times. Biol Cybern 72(3): 185–196. doi: 10.1007/bf00201483
|
[52] | Ratcliff R (1979) Group Reaction Time Distributions and an Analysis of Distribution Statistics Psychol Bull. 86(3): 446–461. doi: 10.1037//0033-2909.86.3.446
|
[53] | Vincent SB (1912) The functions of the vibrissae in the behavior of the white rat. Behav Monogr 1(5).
|
[54] | Akaike H (1974) A new look at the statistical model identification. IEEE Trans Automat Contr 19(6): 716–723. doi: 10.1109/tac.1974.1100705
|
[55] | Hellwig B, Hengstler JG, Schmidt M, Gehrmann MC, Schormann W, et al. (2010) Comparison of scores for bimodality of gene expression distributions and genome-wide evaluation of the prognostic relevance of high scoring genes. Bioinformatics 11(276): 1–18. doi: 10.1186/1471-2105-11-276
|
[56] | Ellision AM (1987) Effect of seed dimorphism on the density-dependent dynamics of experimental populations of Atriplex triangularis (Chenopodiaceae). Am J Bot 74(8): 1280–1288. doi: 10.2307/2444163
|
[57] | Muratov AL, Gnedin OY (2010) Modeling the Metallicity Distribution of Globular Clusters. Astrophys J 718(2): 1266–1288. doi: 10.1088/0004-637x/718/2/1266
|
[58] | Sheskin DJ (2003) Handbook of Parametric and Nonparametric Statistical Procedures, 3rd ed. New York: CRC Press.
|
[59] | Paré M, Munoz DP (1996) Saccadic reaction time in the monkey: advanced preparation of oculomotor programs is primarily responsible for express saccade occurrence. J Neurophysiol 76(6): 3666–3681.
|
[60] | Donders FC (1868/1969) On the speed of mental processes. Acta Psychol 30: 412–431. doi: 10.1016/0001-6918(69)90065-1
|
[61] | Miller J, Low K (2001) Motor Processes in Simple, Go/No-Go, Choice Reaction Time Tasks: A Psychophysiological Analysis. J Exp Psychol Hum Percept Perform 27(2): 266–289. doi: 10.1037/0096-1523.27.2.266
|
[62] | Sternberg S (2001) Separate modifiability, mental modules, the use of pure and composite measures to reveal them. Acta Psychol 106(1–2): 147–246. doi: 10.1016/s0001-6918(00)00045-7
|
[63] | Nachev P, Husain M, Kennard C (2008) Volition and eye movements. In: Kennard C, Leigh RJ, editors. Progress in Brain Research Vol 171. New York: Elsevier. 391–398.
|
[64] | Pesaran B, Nelson MJ, Andersen RA (2008) Free choice activates a decision circuit between frontal and parietal cortex. Nature 453(7193): 406–409. doi: 10.1038/nature06849
|
[65] | Pesaran B (2010) Neural correlations, decisions, actions Curr Opin Neurobiol. 20(2): 166–171. doi: 10.1016/j.conb.2010.03.003
|