全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2014 

A Genome-Wide Survey of Genetic Instability by Transposition in Drosophila Hybrids

DOI: 10.1371/journal.pone.0088992

Full-Text   Cite this paper   Add to My Lib

Abstract:

Hybridization between species is a genomic instability factor involved in increasing mutation rate and new chromosomal rearrangements. Evidence of a relationship between interspecific hybridization and transposable element mobilization has been reported in different organisms, but most studies are usually performed with particular TEs and do not discuss the real effect of hybridization on the whole genome. We have therefore studied whole genome instability of Drosophila interspecific hybrids, looking for the presence of new AFLP markers in hybrids. A high percentage (27–90%) of the instability markers detected corresponds to TEs belonging to classes I and II. Moreover, three transposable elements (Osvaldo, Helena and Galileo) representative of different families, showed an overall increase of transposition rate in hybrids compared to parental species. This research confirms the hypothesis that hybridization induces genomic instability by transposition bursts and suggests that genomic stress by transposition could contribute to a relaxation of mechanisms controlling TEs in the Drosophila genome.

References

[1]  Arnold M (1997) Evolution through genetic exchange. Oxford University Press.
[2]  Arnold M (2006) Natural hybridization and Evolution. Oxford University Press.
[3]  Pollock (1988) A morphometric analysis of a Pseudopanax hybrid swarm. University of Auckland.
[4]  Rieseberg LH, Raymond O, Rosenthal DM, Lai Z, Livingstone K, et al. (2003) Major ecological transitions in wild sunflowers facilitated by hybridization. Science (80-) 301: 1211–1216 Available: http://www.ncbi.nlm.nih.gov/pubmed/12907?807.
[5]  Nolte AW, Tautz D (2010) Understanding the onset of hybrid speciation. Trends Genet 26: 54–58 Available: http://linkinghub.elsevier.com/retrieve/?pii/S0168952509002492.
[6]  Fontdevila A (2004) Evolution: from Molecules to Ecosystems. In: Moya A, Font E, editors. Introgression and hybrid speciation via transposition. Oxford University Press. 182–194.
[7]  Michalak P (2010) An eruption of mobile elements in genomes of hybrid sunflowers. Heredity (Edinb) 104: 329–330 Available: http://europepmc.org/abstract/MED/200685?87.
[8]  Capy P, Langin T, Anxolabehere, Dominique Bazin C (1998) Dynamics and Evolution of Transposable Elements. Thomson Learning.
[9]  Slotkin RK, Martienssen R (2007) Transposable elements and the epigenetic regulation of the genome. Nat Rev Genet 8: 272–285 Available: http://dx.doi.org/10.1038/nrg2072.
[10]  García Guerreiro MP (2012) What makes transposable elements move in the Drosophila genome? Heredity (Edinb) 108: 461–468. Available: http://www.pubmedcentral.nih.gov/article?render.fcgi?artid=3330689&tool=pmcentrez?&rendertype=abstract. Accessed 14 October 2013.
[11]  Ginzburg LEVR, Bincham PM, Yoo S (1984) On the theory of speciation induced by transposable elements. Genetics 107: 331–341.
[12]  Ish-Horowicz D (1982) Transposable elements, hybrid incompatibility and speciation. Nature 299: 676–677 Available: http://dx.doi.org/10.1038/299676a0.
[13]  Rubin GM, Kidwell MG, Bingham PM (1982) The molecular basis of P-M hybrid dysgenesis: The nature of induced mutations. Cell 29: 987–994 Available: http://linkinghub.elsevier.com/retrieve/?pii/0092867482904627.
[14]  Bingham PM, Kidwell MG, Rubin GM (1982) The molecular basis of P-M hybrid dysgenesis: The role of the P element, a P-strain-specific transposon family. Cell 29: 995–1004 Available: http://linkinghub.elsevier.com/retrieve/?pii/0092867482904639.
[15]  Picard (1976) Non-mendelian female sterility in Drosophila melanogaster: hereditary transmission of I factor. Genetics 85: 107–123. doi: 10.1038/hdy.1978.22
[16]  Yannopoulos G, Stamatis N, Monastirioti M, Hatzopoulos P, Louis C (1987) hobo is responsible for the induction of hybrid dysgenesis by strains of Drosophila melanogaster bearing the male recombination factor 23.5MRF. Cell 49: 487–495 Available: http://linkinghub.elsevier.com/retrieve/?pii/009286748790451X.
[17]  Petrov DA, Schutzman JL, Hartl DL, Lozovskaya ER (1995) Diverse transposable elements are mobilized in hybrid dysgenesis in Drosophila virilis. Proc Natl Acad Sci U S A 92: 8050–8054 Available: http://europepmc.org/abstract/MED/764453?6.
[18]  Brennecke J, Malone CD, Aravin AA, Sachidanandam R, Stark A, et al. (2008) An epigenetic role for maternally inherited piRNAs in transposon silencing. Science 322: 1387–1392 Available: http://europepmc.org/abstract/MED/190391?38.
[19]  Akkouche A, Grentzinger T, Fablet M, Armenise C, Burlet N, et al. (2013) Maternally deposited germline piRNAs silence the tirant retrotransposon in somatic cells. EMBO Rep 14: 458–464. Available: http://www.ncbi.nlm.nih.gov/pubmed/23559?065. Accessed 4 October 2013.
[20]  Rebollo R, Horard B, Hubert B, Vieira C (2010) Jumping genes and epigenetics: Towards new species. Gene 454: 1–7 Available: http://www.sciencedirect.com/science/art?icle/pii/S0378111910000296.
[21]  Josefsson C, Dilkes B, Comai L (2006) Parent-Dependent Loss of Gene Silencing during Interspecies Hybridization. Curr Biol 16: 1322–1328 Available: http://www.sciencedirect.com/science/art?icle/pii/S0960982206016289.
[22]  Liu B, Wendel JF (2000) Retrotransposon activation followed by rapid repression in introgressed rice plants. Genome 43: 874–880 Available: http://www.nrcresearchpress.com/doi/abs/?10.1139/g00-058.
[23]  Shan X, Liu Z, Dong Z, Wang Y, Chen Y, et al. (2005) Mobilization of the Active MITE Transposons mPing and Pong in Rice by Introgression from Wild Rice (Zizania latifolia Griseb.). Mol Biol Evol 22: 976–990 Available: http://mbe.oxfordjournals.org/content/22?/4/976.abstract.
[24]  Ungerer MC, Strakosh SC, Zhen Y (2006) Genome expansion in three hybrid sunflower species is associated with retrotransposon proliferation. 16. Available: http://dx.doi.org/10.1016/j.cub.2006.09.?020.
[25]  Shivaprasad P V, Dunn RM, Santos BA, Bassett A, Baulcombe DC (2012) Extraordinary transgressive phenotypes of hybrid tomato are influenced by epigenetics and small silencing RNAs. EMBO J 31: 257–266. Available: http://www.pubmedcentral.nih.gov/article?render.fcgi?artid=3261569&tool=pmcentrez?&rendertype=abstract. Accessed 8 October 2013.
[26]  Coyne JA (1989) Mutation rates in hybrids between sibling species of Drosophila. Heredity (Edinb) 63: 155–162 Available: http://dx.doi.org/10.1038/hdy.1989.87.
[27]  Hey J (1988) Speciation via hybrid dysgenesis: negative evidence from the Drosophila affinis subgroup. Genetica 78: 97–103 Available: http://dx.doi.org/10.1007/BF00058840.
[28]  Metcalfe CJ, Bulazel K V, Ferreri GC, Schroeder-Reiter E, Wanner G, et al. (2007) Genomic Instability Within Centromeres of Interspecific Marsupial Hybrids. Genet 177: 2507–2517 Available: http://www.genetics.org/content/177/4/25?07.abstract.
[29]  O’Neill RJW, O’Neill MJ, Graves JAM (1998) Undermethylation associated with retroelement activation and chromosome remodelling in an interspecific mammalian hybrid. Nature 393: 68–72 Available: http://dx.doi.org/10.1038/29985.
[30]  Labrador M, Fontdevila A (1994) High transposition rates of Osvaldo, a new Drosophila buzzatii retrotransposon. Mol Gen Genet 245: 661–674. doi: 10.1007/bf00297273
[31]  Labrador M, Farré M, Utzet F, Fontdevila a (1999) Interspecific hybridization increases transposition rates of Osvaldo. Mol Biol Evol 16: 931–937 Available: http://www.ncbi.nlm.nih.gov/pubmed/10406?110.
[32]  Pinol J, Francino O, Fontdevila A, Cabré O (1988) Rapid isolation of Drosophila high molecular weight DNA to obtain genomic libraries. Nucleic Acids Res 16: 2736 Available: http://nar.oxfordjournals.org/content/16?/6/2736.short.
[33]  Vela D, Guerreiro MP, Fontdevila A (2011) Adaptation of the AFLP technique as a new tool to detect genetic instability and transposition in interspecific hybrids. Biotechniques 50: 247–250 Available: http://europepmc.org/abstract/MED/215489?08.
[34]  Zampicinini G, Blinov A, Cervella P, Guryev V, Sella G (2004) Insertional polymorphism of a non-LTR mobile element (NLRCth1) in European populations of Chironomus riparius (Diptera, Chironomidae) as detected by transposon insertion display. Genome 47: 1154–1163 Available: http://europepmc.org/abstract/MED/156449?74.
[35]  Akkouche A, Rebollo R, Burlet N, Esnault C, Martinez S, et al. (2012) tirant, a Newly Discovered Active Endogenous Retrovirus in Drosophila simulans: 3675–3681. doi:10.1128/JVI.07146–11.
[36]  García Guerreiro MP, Fontdevila A (2007) The evolutionary history of Drosophila buzzatii. XXXVI. Molecular structural analysis of Osvaldo retrotransposon insertions in colonizing populations unveils drift effects in founder events. Genetics 175: 301–310. doi: 10.1534/genetics.106.064378
[37]  Kruskal WH, Wallis WA (1952) Use of Ranks in One-Criterion Variance Analysis. J Am Stat Assoc 47: 583–621 Available: http://www.jstor.org/stable/2280779.
[38]  Jurka J, Kapitonov V V, Pavlicek A, Klonowski P, Kohany O, et al. (2005) Repbase Update, a database of eukaryotic repetitive elements. Cytogenet Genome Res 110: 462–467 Available: http://europepmc.org/abstract/MED/160936?99.
[39]  Vieira C, Biémont C (1996) Geographical variation in insertion site number of retrotransposon 412 in Drosophila simulans. J Mol Evol 42: 443–451. doi: 10.1007/bf02498638
[40]  Salomon S, Puchta H (1998) Capture of genomic and T-DNA sequences during double-strand break repair in somatic plant cells. EMBO J 17: 6086–6095 Available: http://dx.doi.org/10.1093/emboj/17.20.60?86.
[41]  Pantazidis A, Labrador M, Fontdevila A (1999) The retrotransposon Osvaldo from Drosophila buzzatiidisplays all structural features of a funcrional retrovirus. Mol Biol Evol 16: 909–921. doi: 10.1093/oxfordjournals.molbev.a026180
[42]  Steinau AN, Skinner DZ, Steinau M (2003) Mechanism of extreme genetic recombination in weedy Amaranthus hybrids. Weed Sci 51: 696–701 Available: http://wssajournals.org/doi/abs/10.1614/?P2002-159.
[43]  Madlung A, Tyagi AP, Watson B, Jiang H, Kagochi T, et al. (2005) Genomic changes in synthetic Arabidopsis polyploids. Plant J 41: 221–230 Available: http://dx.doi.org/10.1111/j.1365-313X.20?04.02297.x.
[44]  Coyne JA (1986) Meiotic segregation and male recombination in intespecific hybrids of Drosophila. Genetics 114: 485–494 Available: http://www.genetics.org/content/114/2/48?5.abstract.
[45]  Kawakami T, Strakosh SC, Zhen Y, Ungerer MC (2010) Different scales of Ty1/copia-like retrotransposon proliferation in the genomes of three diploid hybrid sunflower species. Heredity (Edinb) 104: 341–350 Available: http://dx.doi.org/10.1038/hdy.2009.182.
[46]  Labrador M, Farré M, Utzet F, Fontdevila A (1999) Interspecific hybridization increases transposition rates of Osvaldo. Mol Biol Evol 16: 931–937 Available: http://mbe.oxfordjournals.org/content/16?/7/931.abstract.
[47]  Kelleher ES, Edelman NB, Barbash DA (2012) Drosophila Interspecific Hybrids Phenocopy piRNA-Pathway Mutants. PLoS Biol 10. Available: http://dx.doi.org/10.1371/journal.pbio.1?001428.
[48]  Suh DS, Choi EH, Yamazaki T, Harada K (1995) Studies on the transposition rates of mobile genetic elements in a natural population of Drosophila melanogaster. Mol Biol Evol 12: 748–758 Available: http://mbe.oxfordjournals.org/content/12?/5/748.abstract.
[49]  Sheen F, Lim JK, Simmons MJ (1993) Genetic instability in Drosophila melanogaster mediated by hobo transposable elements. Genet 133: 315–334 Available: http://www.genetics.org/content/133/2/31?5.abstract.
[50]  Roy MA, Carroll LM, Kass HD, Nguyen VS, Salem A–H, et al. (1999) Recently integrated human Alu repeats: finding needles in the haystack. Genetica 107: 149–161 doi:10.1023/A:1003941704138.
[51]  Marzo M, Puig M, Ruiz A (2008) The Foldback-like element Galileo belongs to the P superfamily of DNA transposons and is widespread within the Drosophila genus. Proc Natl Acad Sci 105: 2957–2962 Available: http://www.pnas.org/content/105/8/2957.a?bstract.
[52]  Finnegan DJ (1992) Transposable elements. Curr Opin Genet Dev 2: 861–867 Available: http://www.sciencedirect.com/science/art?icle/pii/S0959437X0580108X.
[53]  Hoskins R a, Smith CD, Carlson JW, Carvalho a B, Halpern A, et al. (2002) Heterochromatic sequences in a Drosophila whole-genome shotgun assembly. Genome Biol 3: RESEARCH0085 Available: http://www.pubmedcentral.nih.gov/article?render.fcgi?artid=151187&tool=pmcentrez&?rendertype=abstract.
[54]  Labrador M, Naveira H, Fontdevila A (1990) Genetic mapping of the Adh locus in the repleta group of Drosophila by in situ hybridization. J Hered 81: 83–86.
[55]  Desset S, Meignin C, Dastugue B, Vaury C (2003) COM, a Heterochromatic Locus Governing the Control of Independent Endogenous Retroviruses From Drosophila melanogaster. Genet 164: 501–509 Available: http://www.genetics.org/content/164/2/50?1.abstract.
[56]  Pélisson A, Song SU, Prud’homme N, Smith PA, Bucheton A, et al. (1994) Gypsy transposition correlates with the production of a retroviral envelope-like protein under the tissue-specific control of the Drosophila flamenco gene. EMBO J 13: 4401–4411 Available: http://europepmc.org/abstract/MED/792528?3.
[57]  Stuart JR, Haley KJ, Swedzinski D, Lockner S, Kocian PE, et al. (2002) Telomeric P elements associated with cytotype regulation of the P transposon family in Drosophila melanogaster. Genetics 162: 1641–1654 Available: http://europepmc.org/abstract/MED/125243?39.
[58]  Nuzhdin S V, Mackay TF (1995) The genomic rate of transposable element movement in Drosophila melanogaster. Mol Biol Evol 12: 180–181 Available: http://europepmc.org/abstract/MED/787749?4.
[59]  Vu W, Nuzhdin S (2011) Genetic variation of copia suppression in Drosophila melanogaster. Heredity (Edinb) 106: 207–217. Available: http://www.pubmedcentral.nih.gov/article?render.fcgi?artid=3183883&tool=pmcentrez?&rendertype=abstract. Accessed 14 October 2013.
[60]  Malone CD, Brennecke J, Dus M, Stark A, McCombie WR, et al. (2009) Specialized piRNA pathways act in germline and somatic tissues of the Drosophila ovary. Cell 137: 522–535 Available: http://dx.doi.org/10.1016/j.cell.2009.03?.040.
[61]  Malone JH, Michalak P (2008) Gene expression analysis of the ovary of hybrid females of Xenopus laevis and X. muelleri. BMC Evol Biol 8: 82. Available: http://www.pubmedcentral.nih.gov/article?render.fcgi?artid=2330042&tool=pmcentrez?&rendertype=abstract. Accessed 14 October 2013.
[62]  Naveira H, Fontdevila A (1985) The evolutionary history of Drosophila buzzatii. IX. High frequencies of new chromosome rearrangements induced by introgressive hybridization. Chromosoma 91: 87–94 Available: http://europepmc.org/abstract/MED/398744?3.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133