全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2014 

Inflammation Enhances IL-2 Driven Differentiation of Cytolytic CD4 T Cells

DOI: 10.1371/journal.pone.0089010

Full-Text   Cite this paper   Add to My Lib

Abstract:

Cytolytic CD4 T cells (CD4 CTL) have been identified in vivo in response to viral infections; however, the factors necessary for driving the cytolytic phenotype have not been fully elucidated. Our previously published work suggests IL-2 may be the master regulator of perforin-mediated cytotoxicity in CD4 effectors. To further dissect the role of IL-2 in CD4 CTL generation, T cell receptor transgenic mice deficient in the ability to produce IL-2 or the high affinity IL-2 receptor (IL-2Rα, CD25) were used. Increasing concentrations of IL-2 were necessary to drive perforin (Prf) expression and maximal cytotoxicity. Granzyme B (GrB) expression and killing correlated with STAT5 activation and CD25 expression in vitro, suggesting that signaling through the high affinity IL-2R is critical for full cytotoxicity. IL-2 signaling was also necessary in vivo for inducing the Th1 phenotype and IFN-γ expression in CD4 T cells during influenza A (IAV) infection. In addition, GrB expression, as measured by mean fluorescent intensity, was decreased in CD25 deficient cells; however, the frequency of CD4 cells expressing GrB was unchanged. Similarly, analysis of cytolytic markers such as CD107a/b and Eomesodermin indicate high IL-2Rα expression is not necessary to drive the CD4 CTL phenotype during IAV infection. Thus, inflammatory signals induced by viral infection may overcome the need for strong IL-2 signals in driving cytotoxicity in CD4 cells.

References

[1]  Zhu J, Yamane H, Paul WE (2010) Differentiation of effector CD4 T cell populations (*). Annu Rev Immunol 28: 445–489. doi: 10.1146/annurev-immunol-030409-101212
[2]  Zhu J, Paul WE (2008) CD4 T cells: fates, functions, and faults. Blood 112: 1557–1569. doi: 10.1182/blood-2008-05-078154
[3]  Billings P, Burakoff S, Dorf ME, Benacerraf B (1977) Cytotoxic T lymphocytes specific for I region determinants do not require interactions with H-2K or D gene products. J Exp Med 145: 1387–1392. doi: 10.1084/jem.145.5.1387
[4]  Jacobson S, Richert JR, Biddison WE, Satinsky A, Hartzman RJ, et al. (1984) Measles virus-specific T4+ human cytotoxic T cell clones are restricted by class II HLA antigens. J Immunol 133: 754–757.
[5]  Lukacher AE, Morrison LA, Braciale VL, Malissen B, Braciale TJ (1985) Expression of specific cytolytic activity by H-2I region-restricted, influenza virus-specific T lymphocyte clones. J Exp Med 162: 171–187. doi: 10.1084/jem.162.1.171
[6]  Mahon BP, Katrak K, Nomoto A, Macadam AJ, Minor PD, et al. (1995) Poliovirus-specific CD4+ Th1 clones with both cytotxic and helper activity mediate protective humoral immunity against a lethal poliovirus infection in transgenic mice expressing the human poliovirus receptor J Exp Med. 181: 1285–1292. doi: 10.1084/jem.181.4.1285
[7]  Appay V (2004) The physiological role of cytotoxic CD4(+) T-cells: the holy grail? Clin Exp Immunol 138: 10–13. doi: 10.1111/j.1365-2249.2004.02605.x
[8]  Brown DM (2010) Cytolytic CD4 cells: Direct mediators in infectious disease and malignancy. Cell Immunol 262: 89–95. doi: 10.1016/j.cellimm.2010.02.008
[9]  van de Berg PJ, van Leeuwen EM, ten Berge IJ, van Lier R (2008) Cytotoxic human CD4(+) T cells. Curr Opin Immunol 20: 339–343. doi: 10.1016/j.coi.2008.03.007
[10]  Khanna R, Burrows SR, Thomson SA, Moss DJ, Cresswell P, et al. (1997) Class I processing-defective Burkitt’s lymphoma cells are recognized efficiently by CD4+ EBV-specific CTLs. J Immunol 158: 3619–3625.
[11]  Casazza JP, Betts MR, Price DA, Precopio ML, Ruff LE, et al. (2006) Acquisition of direct antiviral effector functions by CMV-specific CD4+ T lymphocytes with cellular maturation. J Exp Med 203: 2865–2877. doi: 10.1084/jem.20052246
[12]  Soghoian DZ, Jessen H, Flanders M, Sierra-Davidson K, Cutler S, et al. (2012) HIV-specific cytolytic CD4 T cell responses during acute HIV infection predict disease outcome. Sci Transl Med 4: 123ra125. doi: 10.1126/scitranslmed.3003165
[13]  Brown DM, Lee S, Garcia-Hernandez Mde L, Swain SL (2012) Multifunctional CD4 cells expressing gamma interferon and perforin mediate protection against lethal influenza virus infection. J Virol 86: 6792–6803. doi: 10.1128/jvi.07172-11
[14]  Wilkinson TM, Li CK, Chui CS, Huang AK, Perkins M, et al. (2012) Preexisting influenza-specific CD4+ T cells correlate with disease protection against influenza challenge in humans. Nat Med 18: 274–280. doi: 10.1038/nm.2612
[15]  Jellison ER, Kim SK, Welsh RM (2005) Cutting edge: MHC class II-restricted killing in vivo during viral infection. J Immunol 174: 614–618. doi: 10.4049/jimmunol.174.2.614
[16]  Fang M, Siciliano NA, Hersperger AR, Roscoe F, Hu A, et al. (2012) Perforin-dependent CD4+ T-cell cytotoxicity contributes to control a murine poxvirus infection. Proc Natl Acad Sci U S A 109: 9983–9988. doi: 10.1073/pnas.1202143109
[17]  Stalder T, Hahn S, Erb P (1994) Fas antigen is the major target molecule for CD4+ T cell-mediated cytotoxicity. J Immunol 152: 1127–1133.
[18]  Hanabuchi S, Koyanagi M, Kawasaki A, Shinohara N, Matsuzawa A, et al. (1994) Fas and its ligand in a general mechanism of T-cell-mediated cytotoxicity. Proc Natl Acad Sci U S A 91: 4930–4934. doi: 10.1073/pnas.91.11.4930
[19]  Ju ST, Ruddle NH, Strack P, Dorf ME, DeKruyff RH (1990) Expression of two distinct cytolytic mechanisms among murine CD4 subsets. J Immunol 144: 23–31.
[20]  Haigh TA, Lin X, Jia H, Hui EP, Chan AT, et al. (2008) EBV latent membrane proteins (LMPs) 1 and 2 as immunotherapeutic targets: LMP-specific CD4+ cytotoxic T cell recognition of EBV-transformed B cell lines. J Immunol 180: 1643–1654. doi: 10.4049/jimmunol.180.3.1643
[21]  Stuller KA, Cush SS, Flano E (2010) Persistent gamma-herpesvirus infection induces a CD4 T cell response containing functionally distinct effector populations. J Immunol 184: 3850–3856. doi: 10.4049/jimmunol.0902935
[22]  Hildemann SK, Eberlein J, Davenport B, Nguyen TT, Victorino F, et al. (2013) High efficiency of antiviral CD4(+) killer T cells. PLoS One 8: e60420. doi: 10.1371/journal.pone.0060420
[23]  Brown DM, Kamperschroer C, Dilzer AM, Roberts DM, Swain SL (2009) IL-2 and antigen dose differentially regulate perforin- and FasL-mediated cytolytic activity in antigen specific CD4+ T cells. Cell Immunol 257: 69–79. doi: 10.1016/j.cellimm.2009.03.002
[24]  Qui HZ, Hagymasi AT, Bandyopadhyay S, St Rose MC, Ramanarasimhaiah R, et al. (2011) CD134 plus CD137 dual costimulation induces Eomesodermin in CD4 T cells to program cytotoxic Th1 differentiation. J Immunol 187: 3555–3564. doi: 10.4049/jimmunol.1101244
[25]  Curran MA, Geiger TL, Montalvo W, Kim M, Reiner SL, et al. (2013) Systemic 4–1BB activation induces a novel T cell phenotype driven by high expression of Eomesodermin. J Exp Med 210: 743–755. doi: 10.1084/jem.20121190
[26]  Hirschhorn-Cymerman D, Budhu S, Kitano S, Liu C, Zhao F, et al. (2012) Induction of tumoricidal function in CD4+ T cells is associated with concomitant memory and terminally differentiated phenotype. J Exp Med 209: 2113–2126. doi: 10.1084/jem.20120532
[27]  Hua L, Yao S, Pham D, Jiang L, Wright J, et al. (2013) Cytokine-Dependent Induction of CD4+ T cells with Cytotoxic Potential during Influenza Virus Infection. J Virol 87: 11884–11893. doi: 10.1128/jvi.01461-13
[28]  Brown DM, Dilzer AM, Meents DL, Swain SL (2006) CD4 T cell-mediated protection from lethal influenza: perforin and antibody-mediated mechanisms give a one-two punch. J Immunol 177: 2888–2898. doi: 10.4049/jimmunol.177.5.2888
[29]  Moriggl R, Topham DJ, Teglund S, Sexl V, McKay C, et al. (1999) Stat5 is required for IL-2-induced cell cycle progression of peripheral T cells. Immunity 10: 249–259. doi: 10.1016/s1074-7613(00)80025-4
[30]  Dooms H, Wolslegel K, Lin P, Abbas AK (2007) Interleukin-2 enhances CD4+ T cell memory by promoting the generation of IL-7R alpha-expressing cells. J Exp Med 204: 547–557. doi: 10.1084/jem.20062381
[31]  Malek TR, Castro I (2010) Interleukin-2 receptor signaling: at the interface between tolerance and immunity. Immunity 33: 153–165. doi: 10.1016/j.immuni.2010.08.004
[32]  Zhang J, Scordi I, Smyth MJ, Lichtenheld MG (1999) Interleukin 2 receptor signaling regulates the perforin gene through signal transducer and activator of transcription (Stat)5 activation of two enhancers. J Exp Med 190: 1297–1308. doi: 10.1084/jem.190.9.1297
[33]  Changelian PS, Moshinsky D, Kuhn CF, Flanagan ME, Munchhof MJ, et al. (2008) The specificity of JAK3 kinase inhibitors. Blood 111: 2155–2157. doi: 10.1182/blood-2007-09-115030
[34]  Muller J, Sperl B, Reindl W, Kiessling A, Berg T (2008) Discovery of chromone-based inhibitors of the transcription factor STAT5. Chembiochem 9: 723–727. doi: 10.1002/cbic.200700701
[35]  Thomas PG, Brown SA, Yue W, So J, Webby RJ, et al. (2006) An unexpected antibody response to an engineered influenza virus modifies CD8+ T cell responses. Proc Natl Acad Sci U S A 103: 2764–2769. doi: 10.1073/pnas.0511185103
[36]  Stuller KA, Flano E (2009) CD4 T cells mediate killing during persistent gammaherpesvirus 68 infection. J Virol 83: 4700–4703. doi: 10.1128/jvi.02240-08
[37]  Jelley-Gibbs DM, Dibble JP, Brown DM, Strutt TM, McKinstry KK, et al. (2007) Persistent depots of influenza antigen fail to induce a cytotoxic CD8 T cell response. J Immunol 178: 7563–7570. doi: 10.4049/jimmunol.178.12.7563
[38]  Cush SS, Flano E (2011) KLRG1+NKG2A+ CD8 T cells mediate protection and participate in memory responses during gamma-herpesvirus infection. J Immunol 186: 4051–4058. doi: 10.4049/jimmunol.1003122
[39]  Strutt TM, McKinstry KK, Kuang Y, Bradley LM, Swain SL (2012) Memory CD4+ T-cell-mediated protection depends on secondary effectors that are distinct from and superior to primary effectors. Proc Natl Acad Sci U S A 109: E2551–2560. doi: 10.1073/pnas.1205894109
[40]  Cheng G, Yu A, Malek TR (2011) T-cell tolerance and the multi-functional role of IL-2R signaling in T-regulatory cells. Immunol Rev 241: 63–76. doi: 10.1111/j.1600-065x.2011.01004.x
[41]  Liao W, Lin JX, Wang L, Li P, Leonard WJ (2011) Modulation of cytokine receptors by IL-2 broadly regulates differentiation into helper T cell lineages. Nat Immunol 12: 551–559. doi: 10.1038/ni.2030
[42]  Ballesteros-Tato A, Leon B, Graf BA, Moquin A, Adams PS, et al. (2012) Interleukin-2 inhibits germinal center formation by limiting T follicular helper cell differentiation. Immunity 36: 847–856. doi: 10.1016/j.immuni.2012.02.012
[43]  Pipkin ME, Sacks JA, Cruz-Guilloty F, Lichtenheld MG, Bevan MJ, et al. (2010) Interleukin-2 and inflammation induce distinct transcriptional programs that promote the differentiation of effector cytolytic T cells. Immunity 32: 79–90. doi: 10.1016/j.immuni.2009.11.012
[44]  Huntington ND, Legrand N, Alves NL, Jaron B, Weijer K, et al. (2009) IL-15 trans-presentation promotes human NK cell development and differentiation in vivo. J Exp Med 206: 25–34. doi: 10.1084/jem.20082013
[45]  White L, Krishnan S, Strbo N, Liu H, Kolber MA, et al. (2007) Differential effects of IL-21 and IL-15 on perforin expression, lysosomal degranulation, and proliferation in CD8 T cells of patients with human immunodeficiency virus-1 (HIV). Blood 109: 3873–3880. doi: 10.1182/blood-2006-09-045278
[46]  Banchereau J, Thompson-Snipes L, Zurawski S, Blanck JP, Cao Y, et al. (2012) The differential production of cytokines by human Langerhans cells and dermal CD14(+) DCs controls CTL priming. Blood 119: 5742–5749. doi: 10.1182/blood-2011-08-371245
[47]  Sharma R, Fu SM, Ju ST (2011) IL-2: a two-faced master regulator of autoimmunity. J Autoimmun 36: 91–97. doi: 10.1016/j.jaut.2011.01.001
[48]  McGill J, Van Rooijen N, Legge KL (2008) Protective influenza-specific CD8 T cell responses require interactions with dendritic cells in the lungs. J Exp Med 205: 1635–1646. doi: 10.1084/jem.20080314
[49]  McGill J, Van Rooijen N, Legge KL (2010) IL-15 trans-presentation by pulmonary dendritic cells promotes effector CD8 T cell survival during influenza virus infection. J Exp Med 207: 521–534. doi: 10.1084/jem.20091711
[50]  Wuest SC, Edwan JH, Martin JF, Han S, Perry JS, et al. (2011) A role for interleukin-2 trans-presentation in dendritic cell-mediated T cell activation in humans, as revealed by daclizumab therapy. Nat Med 17: 604–609. doi: 10.1038/nm.2365
[51]  MacLeod MK, McKee AS, David A, Wang J, Mason R, et al. (2011) Vaccine adjuvants aluminum and monophosphoryl lipid A provide distinct signals to generate protective cytotoxic memory CD8 T cells. Proc Natl Acad Sci U S A 108: 7914–7919. doi: 10.1073/pnas.1104588108
[52]  Swain SL, McKinstry KK, Strutt TM (2012) Expanding roles for CD4 T cells in immunity to viruses. Nat Rev Immunol 12: 136–148. doi: 10.1038/nri3152
[53]  Hidalgo LG, Einecke G, Allanach K, Halloran PF (2008) The transcriptome of human cytotoxic T cells: similarities and disparities among allostimulated CD4(+) CTL, CD8(+) CTL and NK cells. Am J Transplant 8: 627–636. doi: 10.1111/j.1600-6143.2007.02128.x
[54]  Tsukamoto H, Clise-Dwyer K, Huston GE, Duso DK, Buck AL, et al. (2009) Age-associated increase in lifespan of naive CD4 T cells contributes to T-cell homeostasis but facilitates development of functional defects. Proc Natl Acad Sci U S A 106: 18333–18338. doi: 10.1073/pnas.0910139106

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133