TECTA-related deafness can be inherited as autosomal-dominant nonsyndromic deafness (designated DFNA) or as the autosomal-recessive version. The α-tectorin protein, which is encoded by the TECTA gene, is one of the major components of the tectorial membrane in the inner ear. Using targeted DNA capture and massively parallel sequencing (MPS), we screened 42 genes known to be responsible for human deafness in a Chinese family (Family 3187) in which common deafness mutations had been ruled out as the cause, and identified a novel mutation, c.257–262CCTTTC>GCT (p. Ser86Cys; p. Pro88del) in exon 3 of the TECTA gene in the proband and his extended family. All affected individuals in this family had moderate down-sloping hearing loss across all frequencies. To our knowledge, this is the second TECTA mutation identified in Chinese population. This study demonstrates that targeted genomic capture, MPS, and barcode technology might broaden the availability of genetic testing for individuals with undiagnosed DFNA.
References
[1]
Friedman TB, Griffith AJ (2003) Human nonsyndromic sensorineural deafness. Annu Rev Genomics Hum Genet 4: 341–402.
[2]
Steel KP, Brown SD (1996) Genetics of deafness. Curr Opin Neurobiol 6: 520–525. doi: 10.1016/s0959-4388(96)80059-6
[3]
Cristobal R, Oghalai JS (2008) Hearing loss in children with very low birth weight: current review of epidemiology and pathophysiology. Arch Dis Child Fetal Neonatal Ed 93: F462–468. doi: 10.1136/adc.2007.124214
[4]
Alasti F, Sanati MH, Behrouzifard AH, Sadeghi A, de Brouwer AP, et al. (2008) A novel TECTA mutation confirms the recognizable phenotype among autosomal recessive hearing impairment families. Int J Pediatr Otorhinolaryngol 72: 249–255. doi: 10.1016/j.ijporl.2007.09.023
[5]
Collin RW, de Heer AM, Oostrik J, Pauw RJ, Plantinga RF, et al. (2008) Mid-frequency DFNA8/12 hearing loss caused by a synonymous TECTA mutation that affects an exonic splice enhancer. Eur J Hum Genet 16: 1430–1436. doi: 10.1038/ejhg.2008.110
[6]
de Heer AR, Pauw RJ, Huygen PL, Collin RW, Kremer H, et al. (2009) Flat threshold and mid-frequency hearing impairment in a Dutch DFNA8/12 family with a novel mutation in TECTA. Some evidence for protection of the inner ear. Audiol Neurootol 14: 153–162. doi: 10.1159/000171477
[7]
Hildebrand MS, Morin M, Meyer NC, Mayo F, Modamio-Hoybjor S, et al. (2011) DFNA8/12 caused by TECTA mutations is the most identified subtype of nonsyndromic autosomal dominant hearing loss. Hum Mutat 32: 825–834. doi: 10.1002/humu.21512
[8]
Hughes DC, Legan PK, Steel KP, Richardson GP (1998) Mapping of the alpha-tectorin gene (TECTA) to mouse chromosome 9 and human chromosome 11: a candidate for human autosomal dominant nonsyndromic deafness. Genomics 48: 46–51. doi: 10.1006/geno.1997.5159
[9]
Iwasaki S, Harada D, Usami S, Nagura M, Takeshita T, et al. (2002) Association of clinical features with mutation of TECTA in a family with autosomal dominant hearing loss. Arch Otolaryngol Head Neck Surg 128: 913–917. doi: 10.1001/archotol.128.8.913
[10]
Lezirovitz K, Batissoco AC, Lima FT, Auricchio MT, Nonose RW, et al. (2012) Aberrant transcript produced by a splice donor site deletion in the TECTA gene is associated with autosomal dominant deafness in a Brazilian family. Gene 511: 280–284. doi: 10.1016/j.gene.2012.09.023
[11]
Meyer NC, Alasti F, Nishimura CJ, Imanirad P, Kahrizi K, et al. (2007) Identification of three novel TECTA mutations in Iranian families with autosomal recessive nonsyndromic hearing impairment at the DFNB21 locus. Am J Med Genet A 143A: 1623–1629. doi: 10.1002/ajmg.a.31718
[12]
Moreno-Pelayo MA, Goodyear RJ, Mencia A, Modamio-Hoybjor S, Legan PK, et al. (2008) Characterization of a spontaneous, recessive, missense mutation arising in the Tecta gene. J Assoc Res Otolaryngol 9: 202–214. doi: 10.1007/s10162-008-0116-0
[13]
Moteki H, Nishio SY, Hashimoto S, Takumi Y, Iwasaki S, et al. (2012) TECTA mutations in Japanese with mid-frequency hearing loss affected by zona pellucida domain protein secretion. J Hum Genet 57: 587–592. doi: 10.1038/jhg.2012.73
[14]
Naz S, Alasti F, Mowjoodi A, Riazuddin S, Sanati MH, et al. (2003) Distinctive audiometric profile associated with DFNB21 alleles of TECTA. J Med Genet 40: 360–363. doi: 10.1136/jmg.40.5.360
[15]
Plantinga RF, de Brouwer AP, Huygen PL, Kunst HP, Kremer H, et al. (2006) A novel TECTA mutation in a Dutch DFNA8/12 family confirms genotype-phenotype correlation. J Assoc Res Otolaryngol 7: 173–181. doi: 10.1007/s10162-006-0033-z
[16]
Sagong B, Park HJ, Lee KY, Kim UK (2012) Identification and functional characterization of novel compound heterozygotic mutations in the TECTA gene. Gene 492: 239–243. doi: 10.1016/j.gene.2011.10.022
[17]
Sagong B, Park R, Kim YH, Lee KY, Baek JI, et al. (2010) Two novel missense mutations in the TECTA gene in Korean families with autosomal dominant nonsyndromic hearing loss. Ann Clin Lab Sci 40: 380–385.
[18]
Verhoeven K, Van Laer L, Kirschhofer K, Legan PK, Hughes DC, et al. (1998) Mutations in the human alpha-tectorin gene cause autosomal dominant non-syndromic hearing impairment. Nat Genet 19: 60–62. doi: 10.1038/ng0598-60
[19]
Legan PK, Rau A, Keen JN, Richardson GP (1997) The mouse tectorins. Modular matrix proteins of the inner ear homologous to components of the sperm-egg adhesion system. J Biol Chem 272: 8791–8801. doi: 10.1074/jbc.272.13.8791
[20]
Maeda Y, Fukushima K, Kasai N, Maeta M, Nishizaki K (2001) Quantification of TECTA and DFNA5 expression in the developing mouse cochlea. Neuroreport 12: 3223–3226. doi: 10.1097/00001756-200110290-00016
[21]
Rau A, Legan PK, Richardson GP (1999) Tectorin mRNA expression is spatially and temporally restricted during mouse inner ear development. J Comp Neurol 405: 271–280. doi: 10.1002/(sici)1096-9861(19990308)405:2<271::aid-cne10>3.0.co;2-2
[22]
Pfister M, Thiele H, Van Camp G, Fransen E, Apaydin F, et al. (2004) A genotype-phenotype correlation with gender-effect for hearing impairment caused by TECTA mutations. Cell Physiol Biochem 14: 369–376. doi: 10.1159/000080347
[23]
Legan PK, Lukashkina VA, Goodyear RJ, Kossi M, Russell IJ, et al. (2000) A targeted deletion in alpha-tectorin reveals that the tectorial membrane is required for the gain and timing of cochlear feedback. Neuron 28: 273–285. doi: 10.1016/s0896-6273(00)00102-1
[24]
Legan PK, Lukashkina VA, Goodyear RJ, Lukashkin AN, Verhoeven K, et al. (2005) A deafness mutation isolates a second role for the tectorial membrane in hearing. Nat Neurosci 8: 1035–1042. doi: 10.1038/nn1496
[25]
Metzker ML (2010) Sequencing technologies - the next generation. Nat Rev Genet 11: 31–46. doi: 10.1038/nrg2626
[26]
Rehman AU, Morell RJ, Belyantseva IA, Khan SY, Boger ET, et al. (2010) Targeted capture and next-generation sequencing identifies C9orf75, encoding taperin, as the mutated gene in nonsyndromic deafness DFNB79. Am J Hum Genet 86: 378–388. doi: 10.1016/j.ajhg.2010.01.030
[27]
Walsh T, Shahin H, Elkan-Miller T, Lee MK, Thornton AM, et al. (2010) Whole exome sequencing and homozygosity mapping identify mutation in the cell polarity protein GPSM2 as the cause of nonsyndromic hearing loss DFNB82. Am J Hum Genet 87: 90–94. doi: 10.1016/j.ajhg.2010.05.010
[28]
Pierce SB, Walsh T, Chisholm KM, Lee MK, Thornton AM, et al. (2010) Mutations in the DBP-deficiency protein HSD17B4 cause ovarian dysgenesis, hearing loss, and ataxia of Perrault Syndrome. Am J Hum Genet 87: 282–288. doi: 10.1016/j.ajhg.2010.07.007
[29]
Tang W, Qian D, Ahmad S, Mattox D, Todd NW, et al. (2012) A low-cost exon capture method suitable for large-scale screening of genetic deafness by the massively-parallel sequencing approach. Genet Test Mol Biomarkers 16: 536–542. doi: 10.1089/gtmb.2011.0187
[30]
de Lau W, Barker N, Low TY, Koo BK, Li VS, et al. (2011) Lgr5 homologues associate with Wnt receptors and mediate R-spondin signalling. Nature 476: 293–297. doi: 10.1038/nature10337
[31]
Balciuniene J, Dahl N, Jalonen P, Verhoeven K, Van Camp G, et al. (1999) Alpha-tectorin involvement in hearing disabilities: one gene–two phenotypes. Hum Genet 105: 211–216. doi: 10.1007/s004390051091
[32]
Alloisio N, Morle L, Bozon M, Godet J, Verhoeven K, et al. (1999) Mutation in the zonadhesin-like domain of alpha-tectorin associated with autosomal dominant non-syndromic hearing loss. Eur J Hum Genet 7: 255–258. doi: 10.1038/sj.ejhg.5200273
[33]
Moreno-Pelayo MA, del Castillo I, Villamar M, Romero L, Hernandez-Calvin FJ, et al. (2001) A cysteine substitution in the zona pellucida domain of alpha-tectorin results in autosomal dominant, postlingual, progressive, mid frequency hearing loss in a Spanish family. J Med Genet 38: E13. doi: 10.1136/jmg.38.5.e13
[34]
Meyer NC, Nishimura CJ, McMordie S, Smith RJ (2007) Audioprofiling identifies TECTA and GJB2-related deafness segregating in a single extended pedigree. Clin Genet 72: 130–137. doi: 10.1111/j.1399-0004.2007.00828.x
[35]
Li Z, Guo Y, Lu Y, Li J, Jin Z, et al. (2013) Identification of a Novel TECTA mutation in a Chinese DFNA8/12 family with prelingual progressive sensorineural hearing impairment. PLoS One 8: e70134. doi: 10.1371/journal.pone.0070134
[36]
Mustapha M, Weil D, Chardenoux S, Elias S, El-Zir E, et al. (1999) An alpha-tectorin gene defect causes a newly identified autosomal recessive form of sensorineural pre-lingual non-syndromic deafness, DFNB21. Hum Mol Genet 8: 409–412. doi: 10.1093/hmg/8.3.409
[37]
Han DY (2010) [Strengthen the research on prevention and treatment of sensorineural hearing loss in China]. Zhonghua Er Bi Yan Hou Tou Jing Wai Ke Za Zhi 45: 265–268.
[38]
Estivill X, Fortina P, Surrey S, Rabionet R, Melchionda S, et al. (1998) Connexin-26 mutations in sporadic and inherited sensorineural deafness. Lancet 351: 394–398. doi: 10.1016/s0140-6736(97)11124-2
[39]
Dai P, Yu F, Han B, Liu X, Wang G, et al. (2009) GJB2 mutation spectrum in 2,063 Chinese patients with nonsyndromic hearing impairment. J Transl Med 7: 26. doi: 10.1186/1479-5876-7-26
[40]
Smith RJ, Robin NH (2002) Genetic testing for deafness–GJB2 and SLC26A4 as causes of deafness. J Commun Disord 35: 367–377. doi: 10.1016/s0021-9924(02)00091-6
[41]
Zhu Y, Li Q, Chen Z, Kun Y, Liu L, et al. (2009) Mitochondrial haplotype and phenotype of 13 Chinese families may suggest multi-original evolution of mitochondrial C1494T mutation. Mitochondrion 9: 418–428. doi: 10.1016/j.mito.2009.07.006
[42]
Kupka S, Bodden-Kamps B, Baur M, Zenner HP, Pfister M (2004) [Mitochondrial A1555G mutation. Molecular genetic diagnosis in sporadic cases of non-syndromic hearing impairment]. HNO 52: 968–972. doi: 10.1007/s00106-003-0994-8
[43]
National Biomedical Research Foundation., Dayhoff MO (1978) Protein segment dictionary 78 : from the Atlas of protein sequence and structure, volume 5, and supplements 1, 2, and 3. Silver Spring, Md.Washington, D.C.: National Biomedical Research Foundation; Georgetown University Medical Center. vii, 470 p.
[44]
Chung AE (1993) Embryonal carcinoma and the basement membrane glycoproteins laminin and entactin. Int J Dev Biol 37: 141–150.
[45]
Dziadek M, Paulsson M, Timpl R (1985) Identification and interaction repertoire of large forms of the basement membrane protein nidogen. EMBO J 4: 2513–2518.
[46]
Dziadek M, Timpl R (1985) Expression of nidogen and laminin in basement membranes during mouse embryogenesis and in teratocarcinoma cells. Dev Biol 111: 372–382. doi: 10.1016/0012-1606(85)90491-9