Cryptococcosis by the encapsulated yeast Cryptococcus neoformans affects mostly immunocompromised individuals and is a frequent neurological complication in AIDS patients. Recent studies support the idea that intracellular survival of Cryptococcus yeast cells is important for the pathogenesis of cryptococcosis. However, the initial steps of Cryptococcus internalization by host cells remain poorly understood. Here, we investigate the mechanism of Cryptococcus neoformans phagocytosis by peritoneal macrophages using confocal and electron microscopy techniques, as well as flow cytometry quantification, evaluating the importance of fungal capsule production and of host cell cytoskeletal elements for fungal phagocytosis. Electron microscopy analyses revealed that capsular and acapsular strains of C. neoformans are internalized by macrophages via both ‘zipper’ (receptor-mediated) and ‘trigger’ (membrane ruffle-dependent) phagocytosis mechanisms. Actin filaments surrounded phagosomes of capsular and acapsular yeasts, and the actin depolymerizing drugs cytochalasin D and latrunculin B inhibited yeast internalization and actin recruitment to the phagosome area. In contrast, nocodazole and paclitaxel, inhibitors of microtubule dynamics decreased internalization but did not prevent actin recruitment to the site of phagocytosis. Our results show that different uptake mechanisms, dependent on both actin and tubulin dynamics occur during yeast internalization by macrophages, and that capsule production does not affect the mode of Cryptococcus uptake by host cells.
References
[1]
Park BJ, Wannemuehler KA, Marston BJ, Govender N, Pappas PG, et al. (2009) Estimation of the current global burden of cryptococcal meningitis among persons living with HIV/AIDS. AIDS 23: 525–530. doi: 10.1097/qad.0b013e328322ffac
[2]
Del Valle L, Pina-Oviedo S (2006) HIV disorders of the brain: pathology and pathogenesis. Front Biosci 11: 718–732. doi: 10.2741/1830
[3]
Chang YC, Kwon-Chung KJ (1994) Complementation of a capsule-deficient mutation of Cryptococcus neoformans restores its virulence. Mol Cell Biol 14: 4912–4919. doi: 10.1165/ajrcmb.26.3.4479
[4]
Salkowski CA, Balish E (1991) Susceptibility of congenitally immunodeficient mice to a nonencapsulated strain of Cryptococcus neoformans. Can J Microbiol 37: 834–839. doi: 10.1139/m91-144
[5]
Monari C, Bistoni F, Casadevall A, Pericolini E, Pietrella D, et al. (2005) Glucuronoxylomannan, a microbial compound, regulates expression of costimulatory molecules and production of cytokines in macrophages. J Infect Dis 191: 127–137. doi: 10.1086/426511
[6]
Zaragoza O, Rodrigues ML, De Jesus M, Frases S, Dadachova E, et al. (2009) The capsule of the fungal pathogen Cryptococcus neoformans. Adv Appl Microbiol 68: 133–216. doi: 10.1016/s0065-2164(09)01204-0
[7]
Stano P, Williams V, Villani M, Cymbalyuk ES, Qureshi A, et al. (2009) App1: an antiphagocytic protein that binds to complement receptors 3 and 2. J Immunol 182: 84–91. doi: 10.4049/jimmunol.182.1.84
[8]
Chun CD, Brown JCS, Madhani HD (2011) A major role for capsule-independent phagocytosis-inhibitory mechanisms in mammalian infection by Cryptococcus neoformans. Cell Host Microbe 9: 243–251. doi: 10.1016/j.chom.2011.02.003
[9]
Barbosa FM, Fonseca FL, Holandino C, Alviano CS, Nimrichter L, et al. (2006) Glucuronoxylomannan-mediated interaction of Cryptococcus neoformans with human alveolar cells results in fungal internalization and host cell damage. Microbes Infect 8: 493–502. doi: 10.1016/j.micinf.2005.07.027
[10]
Sabiiti W, May RC (2012) Mechanisms of infection by the human fungal pathogen: 1297–1313.
[11]
Kronstad JW, Attarian R, Cadieux B, Choi J, D’Souza CA, et al. (2011) Expanding fungal pathogenesis: Cryptococcus breaks out of the opportunistic box. Nat Rev Microbiol 9: 193–203. doi: 10.1038/nrmicro2522
[12]
Feldmesser M, Kress Y, Novikoff P, Casadevall A (2000) Cryptococcus neoformans is a facultative intracellular pathogen in murine pulmonary infection. Infect Immun 68: 4225–4237. doi: 10.1128/iai.68.7.4225-4237.2000
[13]
Chang YC, Stins MF, McCaffery MJ, Miller GF, Pare DR, et al. (2004) Cryptococcal yeast cells invade the central nervous system via transcellular penetration of the blood-brain barrier. Infect Immun 72: 4985–4995. doi: 10.1128/iai.72.9.4985-4995.2004
[14]
Swanson JA (2008) Shaping cups into phagosomes and macropinosomes. Nat Rev Mol Cell Biol 9: 639–649. doi: 10.1038/nrm2447
[15]
Gruenberg J, van der Goot FG (2006) Mechanisms of pathogen entry through the endosomal compartments. Nat Rev Mol Cell Biol 7: 495–504. doi: 10.1038/nrm1959
[16]
Swanson JA, Baer SC (1995) Phagocytosis by zippers and triggers. Trends Cell Biol 5: 89–93. doi: 10.1016/s0962-8924(00)88956-4
[17]
Harrison RE, Grinstein S (2002) Phagocytosis and the microtubule cytoskeleton. Biochem Cell Biol 1: 509–515. doi: 10.1139/o02-142
[18]
Moreno-ruiz E, Galán-díez M, Zhu W, Fernández-ruiz E, Enfert C, et al. (2009) Candida albicans internalization by host cells is mediated by a clathrin-dependent mechanism. Cell Microbiol: 1–11.
[19]
Long M, Huang S-H, Wu C-H, Shackleford GM, Jong A (2012) Lipid raft/caveolae signaling is required for Cryptococcus neoformans invasion into human brain microvascular endothelial cells. J Biomed Sci 19: 19. doi: 10.1186/1423-0127-19-19
[20]
Huang S-H, Long M, Wu C-H, Kwon-Chung KJ, Chang YC, et al. (2011) Invasion of Cryptococcus neoformans into human brain microvascular endothelial cells is mediated through the lipid rafts-endocytic pathway via the dual specificity tyrosine phosphorylation-regulated kinase 3 (DYRK3). J Biol Chem 286: 34761–34769. doi: 10.1074/jbc.m111.219378
[21]
Ma H, Croudace JE, Lammas DA, May RC (2007) Direct cell-to-cell spread of a pathogenic yeast. BMC Immunol 8: 15. doi: 10.1186/1471-2172-8-15
[22]
Alvarez M, Casadevall A (2006) Phagosome extrusion and host-cell survival after Cryptococcus neoformans phagocytosis by macrophages. Curr Biol 16: 2161–2165. doi: 10.1016/j.cub.2006.09.061
[23]
Moyrand F, Janbon G (2004) UGD1, encoding the Cryptococcus neoformans UDP-glucose dehydrogenase, is essential for growth at 37°C and for capsule biosynthesis. Eukaryot Cell 3: 1601–1608. doi: 10.1128/ec.3.6.1601-1608.2004
[24]
Jacobson ES, Payne WR (1982) UDP Glucuronate Decarboxylase and Synthesis of Capsular Polysaccharide in Cryptococcus neoformans. J Bacteriol 152: 932–934.
[25]
Chaka W, Scharringa J, Verheul AF, Verhoef J, Van Strijp AG, et al. (1995) Quantitative analysis of phagocytosis and killing of Cryptococcus neoformans by human peripheral blood mononuclear cells by flow cytometry. Clin Diagn Lab Immunol 2: 753–759.
[26]
Svitkina T (2009) Imaging Cytoskeleton Components by Electron Microscopy. Cytoskelet Methods Protoc 586: 1–17. doi: 10.1007/978-1-60761-376-3_10
[27]
Chang ZL, Netski D, Thorkildson P, Kozel TR (2006) Binding and Internalization of Glucuronoxylomannan, the Major Capsular Polysaccharide of Cryptococcus neoformans, by Murine Peritoneal Macrophages. Infect Immun 74: 144–151. doi: 10.1128/iai.74.1.144-151.2006
[28]
May RC, Machesky LM (2001) Phagocytosis and the actin cytoskeleton. J Cell Sci 114: 1061–1077.
[29]
Aiastui A, Pucciarelli MG, García-del Portillo F (2010) Salmonella enterica serovar typhimurium invades fibroblasts by multiple routes differing from the entry into epithelial cells. Infect Immun 78: 2700–2713. doi: 10.1128/iai.01389-09
[30]
Kuhn M (1998) The microtubule depolymerizing drugs nocodazole and colchicine inhibit the uptake of Listeria monocytogenes by P388D1 macrophages. FEMS Microbiol Lett 160: 87–90. doi: 10.1016/s0378-1097(98)00017-2
[31]
McClelland EE, Bernhardt P, Casadevall A (2006) Estimating the relative contributions of virulence factors for pathogenic microbes. Infect Immun 74: 1500–1504. doi: 10.1128/iai.74.3.1500-1504.2006
[32]
Carter GC, Bernstone L, Baskaran D, James W (2011) HIV-1 infects macrophages by exploiting an endocytic route dependent on dynamin, Rac1 and Pak1. Virology 409: 234–250. doi: 10.1016/j.virol.2010.10.018
[33]
Mercer J, Schelhaas M, Helenius A (2010) Virus entry by endocytosis. Annu Rev Biochem 79: 803–833. doi: 10.1146/annurev-biochem-060208-104626
[34]
Barrias ES, Reignault LC, De Souza W, Carvalho TMU (2012) Trypanosoma cruzi uses macropinocytosis as an additional entry pathway into mammalian host cell. Microbes Infect 14: 1340–1351. doi: 10.1016/j.micinf.2012.08.003
Luther K, Rohde M, Sturm K, Kotz A, Heesemann J, et al. (2008) Characterisation of the phagocytic uptake of Aspergillus fumigatus conidia by macrophages. Microbes Infect 10: 175–184. doi: 10.1016/j.micinf.2007.11.001