全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2014 

A Developmental Approach to Predicting Neuronal Connectivity from Small Biological Datasets: A Gradient-Based Neuron Growth Model

DOI: 10.1371/journal.pone.0089461

Full-Text   Cite this paper   Add to My Lib

Abstract:

Relating structure and function of neuronal circuits is a challenging problem. It requires demonstrating how dynamical patterns of spiking activity lead to functions like cognitive behaviour and identifying the neurons and connections that lead to appropriate activity of a circuit. We apply a “developmental approach” to define the connectome of a simple nervous system, where connections between neurons are not prescribed but appear as a result of neuron growth. A gradient based mathematical model of two-dimensional axon growth from rows of undifferentiated neurons is derived for the different types of neurons in the brainstem and spinal cord of young tadpoles of the frog Xenopus. Model parameters define a two-dimensional CNS growth environment with three gradient cues and the specific responsiveness of the axons of each neuron type to these cues. The model is described by a nonlinear system of three difference equations; it includes a random variable, and takes specific neuron characteristics into account. Anatomical measurements are first used to position cell bodies in rows and define axon origins. Then a generalization procedure allows information on the axons of individual neurons from small anatomical datasets to be used to generate larger artificial datasets. To specify parameters in the axon growth model we use a stochastic optimization procedure, derive a cost function and find the optimal parameters for each type of neuron. Our biologically realistic model of axon growth starts from axon outgrowth from the cell body and generates multiple axons for each different neuron type with statistical properties matching those of real axons. We illustrate how the axon growth model works for neurons with axons which grow to the same and the opposite side of the CNS. We then show how, by adding a simple specification for dendrite morphology, our model “developmental approach” allows us to generate biologically-realistic connectomes.

References

[1]  Li WC, Cooke T, Sautois B, Soffe SR, Borisyuk R, et al. (2007) Axon and dendrite geography predict the specificity of synaptic connections in a functioning spinal cord network. Neural Dev 2: 17. doi: 10.1186/1749-8104-2-17
[2]  Gordon-Weeks PR (2000) Neuronal growth cones. Cambridge, UK; New York: Cambridge University Press. xii, 260 p. p.
[3]  Tessier-Lavigne M, Goodman CS (1996) The molecular biology of axon guidance. Science 274: 1123–1133. doi: 10.1126/science.274.5290.1123
[4]  Mueller BK (1999) Growth cone guidance: first steps towards a deeper understanding. Annu Rev Neurosci 22: 351–388. doi: 10.1146/annurev.neuro.22.1.351
[5]  Dickson BJ (2002) Molecular mechanisms of axon guidance. Science 298: 1959–1964. doi: 10.1126/science.1072165
[6]  Yamamoto N, Tamada A, Murakami F (2002) Wiring of the brain by a range of guidance cues. Prog Neurobiol 68: 393–407. doi: 10.1016/s0301-0082(02)00129-6
[7]  Goodhill GJ (1997) Diffusion in axon guidance. Eur J Neurosci 9: 1414–1421. doi: 10.1111/j.1460-9568.1997.tb01496.x
[8]  Goodhill GJ (1998) Mathematical guidance for axons. Trends Neurosci 21: 226–231. doi: 10.1016/s0166-2236(97)01203-4
[9]  Goodhill GJ, Baier H (1998) Axon guidance: stretching gradients to the limit. Neural Comput 10: 521–527. doi: 10.1162/089976698300017638
[10]  Shimozono S, Iimura T, Kitaguchi T, Higashijima S, Miyawaki A (2013) Visualization of an endogenous retinoic acid gradient across embryonic development. Nature 496: 363–366. doi: 10.1038/nature12037
[11]  Rehder V, Kater SB (1996) Filopodia on neuronal growth cones: Multi-functional structures with sensory and motor capabilities. Seminars in the Neurosciences 8: 81–88. doi: 10.1006/smns.1996.0011
[12]  Song H, Poo M (2001) The cell biology of neuronal navigation. Nat Cell Biol 3: E81–88. doi: 10.1038/35060164
[13]  Nishiyama M, Hoshino A, Tsai L, Henley JR, Goshima Y, et al. (2003) Cyclic AMP/GMP-dependent modulation of Ca2+ channels sets the polarity of nerve growth-cone turning. Nature 423: 990–995. doi: 10.1038/nature01751
[14]  Hentschel HGE, van Ooyen A (1999) Models of axon guidance and bundling during development. Proceedings of the Royal Society B-Biological Sciences 266: 2231–2238. doi: 10.1098/rspb.1999.0913
[15]  Krottje JK, van Ooyen A (2007) A mathematical framework for modeling axon guidance. Bulletin of Mathematical Biology 69: 3–31. doi: 10.1007/s11538-006-9142-4
[16]  Munno DW, Syed NI (2003) Synaptogenesis in the CNS: an odyssey from wiring together to firing together. J Physiol 552: 1–11. doi: 10.1113/jphysiol.2003.045062
[17]  Chilton JK (2006) Molecular mechanisms of axon guidance. Developmental Biology 292: 13–24. doi: 10.1016/j.ydbio.2005.12.048
[18]  Schnorrer F, Dickson BJ (2004) Axon guidance: Morphogens show the way. Current Biology 14: R19–R21. doi: 10.1016/j.cub.2003.12.016
[19]  Polleux F, Ince-Dunn G, Ghosh A (2007) Transcriptional regulation of vertebrate axon guidance and synapse formation. Nat Rev Neurosci 8: 331–340. doi: 10.1038/nrn2118
[20]  Helms AW, Johnson JE (2003) Specification of dorsal spinal cord interneurons. Current Opinion in Neurobiology 13: 42–49. doi: 10.1016/s0959-4388(03)00010-2
[21]  Goulding M, Pfaff SL (2005) Development of circuits that generate simple rhythmic behaviors in vertebrates. Current Opinion in Neurobiology 15: 14–20. doi: 10.1016/j.conb.2005.01.017
[22]  Zou Y, Lyuksyutova AI (2007) Morphogens as conserved axon guidance cues. Current Opinion in Neurobiology 17: 22–28. doi: 10.1016/j.conb.2007.01.006
[23]  Charron F, Stein E, Jeong J, McMahon AP, Tessier-Lavigne M (2003) The morphogen Sonic hedgehog is an axonal chemoattractant that collaborates with Netrin-1 in midline axon guidance. Cell 113: 11–23. doi: 10.1016/s0092-8674(03)00199-5
[24]  Lyuksyutova AI, Lu CC, Milanesio N, King LA, Guo NN, et al. (2003) Anterior-posterior guidance of commissural Axons by Wnt-frizzled signaling. Science 302: 1984–1988. doi: 10.1126/science.1089610
[25]  Moon MS, Gomez TM (2005) Adjacent pioneer commissural interneuron growth cones switch from contact avoidance to axon fasciculation after midline crossing. Developmental Biology 288: 474–486. doi: 10.1016/j.ydbio.2005.09.049
[26]  Shirasaki R, Murakami F (2001) Crossing the floor plate triggers sharp turning of commissural axons. Developmental Biology 236: 99–108. doi: 10.1006/dbio.2001.0321
[27]  Imondi R, Kaprielian Z (2001) Commissural axon pathfinding on the contralateral side of the floor plate: a role for B-class ephrins in specifying the dorsoventral position of longitudinally projecting commissural axons. Development 128: 4859–4871.
[28]  Roberts A, Li WC, Soffe SR (2010) How neurons generate behavior in a hatchling amphibian tadpole: an outline. Frontiers in Behavioral Neuroscience 4.
[29]  Li WC, Soffe SR, Roberts A (2002) Spinal inhibitory neurons that modulate cutaneous sensory pathways during locomotion in a simple vertebrate. Journal of Neuroscience 22: 10924–10934.
[30]  Li WC, Soffe SR, Roberts A (2003) The spinal Interneurons and properties of glutamatergic synapses in a primitive vertebrate cutaneous flexion reflex. Journal of Neuroscience 23: 9068–9077.
[31]  Li WC, Higashijima S, Parry DM, Roberts A, Soffe SR (2004) Primitive roles for inhibitory interneurons in developing frog spinal cord. Journal of Neuroscience 24: 5840–5848. doi: 10.1523/jneurosci.1633-04.2004
[32]  Li WC, Soffe SR, Wolf E, Roberts A (2006) Persistent responses to brief stimuli: Feedback excitation among brainstem neurons. Journal of Neuroscience 26: 4026–4035. doi: 10.1523/jneurosci.4727-05.2006
[33]  Borisyuk R, Al Azad AK, Conte D, Roberts A, Soffe SR (2011) Modeling the connectome of a simple spinal cord. Front Neuroinform 5: 20. doi: 10.3389/fninf.2011.00020
[34]  Borisyuk R, Cooke T, Roberts A (2008) Stochasticity and functionality of neural systems: Mathematical modelling of axon growth in the spinal cord of tadpole. Biosystems 93: 101–114. doi: 10.1016/j.biosystems.2008.03.012
[35]  Borisyuk R aAA, Conte D, Roberts A, Soffe SR (2011) Modeling the connectome of a simple spinal cord. Front Neuroinform 5: 20 5: 20. doi: 10.3389/fninf.2011.00020
[36]  Marder E, Taylor AL (2011) Multiple models to capture the variability in biological neurons and networks. Nature Neuroscience 14: 133–138. doi: 10.1038/nn.2735
[37]  McCaig CD, Rajnicek AM, Song B, Zhao M (2005) Controlling cell behavior electrically: Current views and future potential. Physiological Reviews 85: 943–978. doi: 10.1152/physrev.00020.2004
[38]  Mortimer D, Fothergill T, Pujic Z, Richards LJ, Goodhill GJ (2008) Growth cone chemotaxis. Trends Neurosci 31: 90–98. doi: 10.1016/j.tins.2007.11.008
[39]  Goodhill GJ (2003) A theoretical model of axon guidance by the Robo code. Neural Comput 15: 549–564. doi: 10.1162/089976603321192077
[40]  Rosoff WJ, Urbach JS, Esrick MA, McAllister RG, Richards LJ, et al. (2004) A new chemotaxis assay shows the extreme sensitivity of axons to molecular gradients. Nature Neuroscience 7: 678–682. doi: 10.1038/nn1259
[41]  Godfrey KB, Eglen SJ, Swindale NV (2009) A Multi-Component Model of the Developing Retinocollicular Pathway Incorporating Axonal and Synaptic Growth. Plos Computational Biology 5.
[42]  Strogatz SH (1994) Nonlinear dynamics and Chaos: with applications to physics, biology, chemistry, and engineering. Reading, Mass.: Addison-Wesley Pub. xi, 498 p. p.
[43]  Audet C, Dennis JE (2003) Analysis of generalized pattern searches. Siam Journal on Optimization 13: 889–903. doi: 10.1137/s1052623400378742
[44]  Roberts A, Clarke JD (1982) The neuroanatomy of an amphibian embryo spinal cord. Philos Trans R Soc Lond B Biol Sci 296: 195–212. doi: 10.1098/rstb.1982.0002
[45]  Jessell TM (2000) Neuronal specification in the spinal cord: inductive signals and transcriptional codes. Nat Rev Genet 1: 20–29. doi: 10.1038/35049541
[46]  Lewis KE (2006) How do genes regulate simple behaviours? Understanding how different neurons in the vertebrate spinal cord are genetically specified. Philosophical Transactions of the Royal Society B-Biological Sciences 361: 45–66. doi: 10.1098/rstb.2005.1778
[47]  Li WC, Perrins R, Soffe SR, Yoshida M, Walford A, et al. (2001) Defining classes of spinal interneuron and their axonal projections in hatchling Xenopus laevis tadpoles. Journal of Comparative Neurology 441: 248–265. doi: 10.1002/cne.1410
[48]  Li WC, Higashijima S, Parry DM, Roberts A, Soffe SR (2004) Primitive roles for inhibitory interneurons in developing frog spinal cord. J Neurosci 24: 5840–5848. doi: 10.1523/jneurosci.1633-04.2004
[49]  Sperry RW (1963) Chemoaffinity in the Orderly Growth of Nerve Fiber Patterns and Connections. Proc Natl Acad Sci U S A 50: 703–710. doi: 10.1073/pnas.50.4.703
[50]  Jung H, O’Hare CM, Holt CE (2011) Translational regulation in growth cones. Current Opinion in Genetics & Development 21: 458–464. doi: 10.1016/j.gde.2011.04.004
[51]  van Ooyen A (2011) Using theoretical models to analyse neural development (vol 12, pg 311, 2011). Nature Reviews Neuroscience 12.
[52]  Mortimer D, Dayan P, Burrage K, Goodhill GJ (2010) Optimizing chemotaxis by measuring unbound-bound transitions. Physica D-Nonlinear Phenomena 239: 477–484. doi: 10.1016/j.physd.2009.09.009
[53]  Mortimer D, Pujic Z, Vaughan T, Thompson AW, Feldner J, et al. (2010) Axon guidance by growth-rate modulation. Proc Natl Acad Sci U S A 107: 5202–5207. doi: 10.1073/pnas.0909254107
[54]  Mortimer D, Dayan P, Burrage K, Goodhill GJ (2011) Bayes-optimal chemotaxis. Neural Comput 23: 336–373. doi: 10.1162/neco_a_00075
[55]  Forbes EM, Thompson AW, Yuan J, Goodhill GJ (2012) Calcium and cAMP levels interact to determine attraction versus repulsion in axon guidance. Neuron 74: 490–503. doi: 10.1016/j.neuron.2012.02.035
[56]  Shirasaki R, Lewcock JW, Lettieri K, Pfaff SL (2006) FGF as a target-derived chemoattractant for developing motor axons genetically programmed by the LIM code. Neuron 50: 841–853. doi: 10.1016/j.neuron.2006.04.030
[57]  Zubler F, Douglas R (2009) A framework for modeling the growth and development of neurons and networks. Frontiers in Computational Neuroscience 3.
[58]  Borisyuk R, Cooke T, Roberts A (2008) Stochasticity and functionality of neural systems: mathematical modelling of axon growth in the spinal cord of tadpole. Biosystems 93: 101–114. doi: 10.1016/j.biosystems.2008.03.012
[59]  Sergi PN, Morana Roccasalvo I, Tonazzini I, Cecchini M, Micera S (2013) Cell guidance on nanogratings: a computational model of the interplay between PC12 growth cones and nanostructures. PLoS One 8: e70304. doi: 10.1371/journal.pone.0070304
[60]  Roberts A, Conte D, Hull M, Merrison-Hort R, Kalam al Azad A, Buhl A, Borisyuk R SoffeSR (2014) Can simple rules control development of a pioneer vertebrate neuronal network generating behavior? J Neurosci 34: 608–621. doi: 10.1523/jneurosci.3248-13.2014

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133