全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2014 

Effect of Bacteria on the Wound Healing Behavior of Oral Epithelial Cells

DOI: 10.1371/journal.pone.0089475

Full-Text   Cite this paper   Add to My Lib

Abstract:

Wounded tissue offers opportunity to microflora to adhere, colonize, invade and infect surrounding healthy tissue. The bacteria of the oral cavity have the potential to alter the wound healing process by interacting with keratinocytes. The aim of this study was to investigate mechanisms through which oral bacteria may influence re-epithelialization by interacting with gingival keratinocytes. By an in vitro scratch assay we demonstrate that primary gingival keratinocytes have impaired closure when exposed to two well characterized oral bacteria, P. gingivalis, and to a lesser extent, F. nucleatum. P. gingivalis reduced wound closure by ~40%, which was partially dependent on proteolytic activity, and bacteria was still present within infected cells 9 days later despite exposure to bacteria for only 24 h. Both oral bacteria caused keratinocyte apoptosis at the wound site with cell death being greatest at the wound edge. P. gingivalis and F. nucleatum adversely affected cell proliferation and the effect also had a spatial component being most striking at the edge. The impact of the bacteria was long lasting even when exposure was brief. Cell migration was compromised in bacteria challenged keratinocytes with P. gingivalis having more severe effect (p<0.05) than F. nucleatum. Quantitative real time PCR of bacteria challenged cells showed that P. gingivalis and to a lesser extent F. nucleatum significantly downregulated cell cycle genes cyclin1, CDK1, and CDK4 (p<0.05) that are critical for GI/S transition. Further, genes associated with cell migration such as integrin beta-3 and -6 were significantly downregulated by P. gingivalis (p<0.05).

References

[1]  Guo S, Dipietro LA (2010) Factors affecting wound healing. J Dent Res 89: 219–229. doi: 10.1177/0022034509359125
[2]  Siddiqui AR, Bernstein JM (2010) Chronic wound infection: facts and controversies. Clin Dermatol 28: 519–526. doi: 10.1016/j.clindermatol.2010.03.009
[3]  Scales BS, Huffnagle GB (2013) The microbiome in wound repair and tissue fibrosis. J Pathol. 229: 323–331. doi: 10.1002/path.4118
[4]  Han A, Zenilman JM, Melendez JH, Shirtliff ME, Agostinho A, et al. (2011) The importance of a multifaceted approach to characterizing the microbial flora of chronic wounds. Wound Repair Regen 19: 532–541. doi: 10.1111/j.1524-475x.2011.00720.x
[5]  Kuboniwa M, Tribble GD, Hendrickson EL, Amano A, Lamont RJ, et al. (2012) Insights into the virulence of oral biofilms: discoveries from proteomics. Expert Rev Proteomics 9: 311–323. doi: 10.1586/epr.12.16
[6]  Han YW, Shi W, Huang GT, Kinder Haake S, Park NH, et al. (2000) Interactions between periodontal bacteria and human oral epithelial cells: Fusobacterium nucleatum adheres to and invades epithelial cells. Infect Immun 68: 3140–3146. doi: 10.1128/iai.68.6.3140-3146.2000
[7]  Hayashi C, Viereck J, Hua N, Phinikaridou A, Madrigal AG, et al. (2011) Porphyromonas gingivalis accelerates inflammatory atherosclerosis in the innominate artery of ApoE deficient mice. Atherosclerosis 215: 52–59. doi: 10.1016/j.atherosclerosis.2010.12.009
[8]  Lamont RJ, Chan A, Belton CM, Izutsu KT, Vasel D, et al. (1995) Porphyromonas gingivalis invasion of gingival epithelial cells. Infect Immun 63: 3878–3885.
[9]  Hajishengallis G, Liang S, Payne MA, Hashim A, Jotwani R, et al. (2011) Low-abundance biofilm species orchestrates inflammatory periodontal disease through the commensal microbiota and complement. Cell Host Microbe 10: 497–506. doi: 10.1016/j.chom.2011.10.006
[10]  Dale BA (2002) Periodontal epithelium: a newly recognized role in health and disease. Periodontol 2000 30: 70–78. doi: 10.1034/j.1600-0757.2002.03007.x
[11]  Aswini YB (2009) The genomics of oral cancer and wound healing. J Indian Soc Pedod Prev Dent 27: 2–5. doi: 10.4103/0970-4388.50808
[12]  Hedner E, Vahlne A, Hirsch JM (1990) Primary herpes simplex virus (type 1) infection delays healing of oral excisional and extraction wounds in the rat. J Oral Pathol Med 19: 471–476. doi: 10.1111/j.1600-0714.1990.tb00789.x
[13]  Brozovic S, Sahoo R, Barve S, Shiba H, Uriarte S, et al. (2006) Porphyromonas gingivalis enhances FasL expression via up-regulation of NFkappaB-mediated gene transcription and induces apoptotic cell death in human gingival epithelial cells. Microbiology 152: 797–806. doi: 10.1099/mic.0.28472-0
[14]  Bostanci N, Belibasakis GN (2012) Porphyromonas gingivalis: an invasive and evasive opportunistic oral pathogen. FEMS Microbiol Lett 333: 1–9. doi: 10.1111/j.1574-6968.2012.02579.x
[15]  Imamura T (2003) The role of gingipains in the pathogenesis of periodontal disease. J Periodontol 74: 111–1118. doi: 10.1902/jop.2003.74.1.111
[16]  Tang L, Wu JJ, Ma Q, Cui T, Andreopoulos FM, et al. (2010) Human lactoferrin stimulates skin keratinocyte function and wound re-epithelialization. Br J Dermatol 163: 38–47. doi: 10.1111/j.1365-2133.2010.09748.x
[17]  Mendon?a RJ, Coutinho-Netto J (2009) Cellular aspects of wound healing. An Bras Dermatol. 84: 257–262.
[18]  Graves DT, Oates T, Garlet GP (2011) Review of osteoimmunology and the host response in endodontic and periodontal lesions. J Oral Microbiol. 3.
[19]  Lamont RJ, Chan A, Belton CM, Izutsu KT, Vasel D, et al. (1995) Porphyromonas gingivalis invasion of gingival epithelial cells. Infect Immun 63: 3878–3885.
[20]  Yilmaz O, Young PA, Lamont RJ, Kenny GE (2003) Gingival epithelial cell signalling and cytoskeletal responses to Porphyromonas gingivalis invasion. Microbiology 149: 2417–2426. doi: 10.1099/mic.0.26483-0
[21]  Kadowaki T, Nakayama K, Okamoto K, Abe N, Baba A, et al. (2000) Porphyromonas gingivalis proteinases as virulence determinants in progression of periodontal diseases. J Biochem 12: 153–159. doi: 10.1093/oxfordjournals.jbchem.a022735
[22]  Travis J, Pike R, Imamura T, Potempa J (1997) Porphyromonas gingivalis proteinases as virulence factors in the development of periodontitis. J Periodontal Res 32: 120–125. doi: 10.1111/j.1600-0765.1997.tb01392.x
[23]  Kuboniwa M, Hasegawa Y, Mao S, Shizukuishi S, Amano A, et al. (2008) P. gingivalis accelerates gingival epithelial cell progression through the cell cycle. Microbes Infect 10: 122–128. doi: 10.1016/j.micinf.2007.10.011
[24]  Reinke JM, Sorg H (2012) Wound repair and regeneration. Eur Surg Res 49: 35–43. doi: 10.1159/000339613
[25]  Ekholm SV, Reed SI (2000) Regulation of G(1) cyclin-dependent kinases in the mammalian cell cycle. Curr Opin Cell Biol. 12: 676–684. doi: 10.1016/s0955-0674(00)00151-4
[26]  Hochegger H, Takeda S, Hunt T (2008) Cyclin-dependent kinases and cell-cycle transitions: does one fit all? Nat Rev Mol Cell Biol. 9: 910–916. doi: 10.1038/nrm2510
[27]  Watt FM (2002) Role of integrins in regulating epidermal adhesion, growth and differentiation. EMBO J 21: 3919–3926. doi: 10.1093/emboj/cdf399
[28]  H?kkinen L, Uitto VJ, Larjava H (2000) Cell biology of gingival wound healing. Periodontol 2000 24: 127–152. doi: 10.1034/j.1600-0757.2000.2240107.x
[29]  Danen EH, van Rheenen J, Franken W, Huveneers S, Sonneveld P, et al. (2005) Integrins control motile strategy through a Rho-cofilin pathway. J Cell Biol 169: 515–526. doi: 10.1083/jcb.200412081
[30]  Amano A (2007) Disruption of epithelial barrier and impairment of cellular function by Porphyromonas gingivalis. Front Biosci. 12: 3965–3974. doi: 10.2741/2363
[31]  Furuta N, Takeuchi H, Amano A (2009) Entry of Porphyromonas gingivalis outer membrane vesicles into epithelial cells causes cellular functional impairment. Infect Immun. 77: 4761–4770. doi: 10.1128/iai.00841-09
[32]  Periasamy S, Kolenbrander PE (2009) Mutualistic biofilm communities develop with Porphyromonas gingivalis and initial, early, and late colonizers of enamel. J Bacteriol (191) 6804–6811. doi: 10.1128/jb.01006-09

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133