[1] | Faostat website. Available: http://faostat.fao.org/(Accessed 2014 January 28).
|
[2] | Meyer RS, Karol KG, Little DP, Nee MH, Litt A (2012) Phylogeographic relationships among Asian eggplants and new perspectives on eggplant domestication. Molecular Phylogenetics and Evolution 63: 685–701. doi: 10.1016/j.ympev.2012.02.006
|
[3] | Cericola F, Portis E, Toppino L, Barchi L, Acciarri N, et al. (2013) The population structure and diversity of eggplant from asia and the mediterranean basin. PLoS ONE 8: e73702. doi: 10.1371/journal.pone.0073702
|
[4] | Frary A, Nesbitt TC, Frary A, Grandillo S, Knaap Evd, et al. (2000) fw2.2: a quantitative trait locus key to the evolution of tomato fruit size. Science 289: 85–88. doi: 10.1126/science.289.5476.85
|
[5] | Grandillo S, Ku H-M, Tanksley SD (1996) Characterization of fs8.1, a major QTL influencing fruit shape in tomato. Molecular Breeding 2: 251–260. doi: 10.1007/bf00564202
|
[6] | Grandillo S, Ku HM, Tanksley SD (1999) Identifying the loci responsible for natural variation in fruit size and shape in tomato. TAG Theoretical and Applied Genetics 99: 978–987. doi: 10.1007/s001220051405
|
[7] | Chaim AB, Paran I, Grube RC, Jahn M, van Wijk R, et al. (2001) QTL mapping of fruit-related traits in pepper (Capsicum annuum). TAG Theoretical and Applied Genetics 102: 1016–1028. doi: 10.1007/s001220000461
|
[8] | Chaim AC, Borovsky YB, De Jong WDJ, Paran IP (2003) Linkage of the A locus for the presence of anthocyanin and fs10.1, a major fruit-shape QTL in pepper. TAG Theoretical and Applied Genetics 106: 889–894.
|
[9] | Rao GU, Ben Chaim A, Borovsky Y, Paran I (2003) Mapping of yield-related QTLs in pepper in an interspecific cross of Capsicum annuum and C. frutescens. TAG Theoretical and Applied Genetics 106: 1457–1466.
|
[10] | Zygier S, Chaim AB, Efrati A, Kaluzky G, Borovsky Y, et al. (2005) QTLs mapping for fruit size and shape in chromosomes 2 and 4 in pepper and a comparison of the pepper QTL map with that of tomato. TAG Theoretical and Applied Genetics 111: 437–445. doi: 10.1007/s00122-005-2015-7
|
[11] | Barchi L, Bonnet J, Boudet C, Signoret P, Nagy I, et al. (2007) A high-resolution, intraspecific linkage map of pepper (Capsicum annuum L.) and selection of reduced recombinant inbred line subsets for fast mapping. Genome 50: 51–60. doi: 10.1139/g06-140
|
[12] | Bradshaw J, Hackett C, Pande B, Waugh R, Bryan G (2008) QTL mapping of yield, agronomic and quality traits in tetraploid potato (Solanum tuberosum subsp. tuberosum). TAG Theoretical and Applied Genetics 116: 193–211. doi: 10.1007/s00122-007-0659-1
|
[13] | Zhang N, Brewer M, Knaap E (2012) Fine mapping of fw3.2 controlling fruit weight in tomato. Theoretical and Applied Genetics 125: 273–284. doi: 10.1007/s00122-012-1832-8
|
[14] | Huang Z, Knaap E (2011) Tomato fruit weight 11.3 maps close to fasciated on the bottom of chromosome 11. Theoretical and Applied Genetics 123: 465–474. doi: 10.1007/s00122-011-1599-3
|
[15] | Chadha ML (1993) Improvement of brinjal. Advances in Horticulture 5 Vegetable crops, part 1. New Delhi, India: K.L., Chadha and G. Kalloo (eds.). 105–135.
|
[16] | Nunome T, Ishiguro K, Yoshida T, Hirai M (2001) Mapping of fruit shape and color development traits in eggplant (Solanum melongena L.) based on RAPD and AFLP markers. Breeding science 51: 19–26. doi: 10.1270/jsbbs.51.19
|
[17] | Doganlar S, Frary A, Daunay M, Lester R, Tanksley S (2002) Conservation of gene function in the Solanaceae as revealed by comparative mapping of domestication traits in eggplant. Genetics 161: 1713–1726.
|
[18] | Frary A, Doganlar S, Daunay MC, Tanksley SD (2003) QTL analysis of morphological traits in eggplant and implications for conservation of gene function during evolution of solanaceous species. TAG Theoretical and Applied Genetics 107: 359–370. doi: 10.1007/s00122-003-1257-5
|
[19] | Miyatake K, Saito T, Negoro S, Yamaguchi H, Nunome T, et al. (2012) Development of selective markers linked to a major QTL for parthenocarpy in eggplant (Solanum melongena L.). TAG Theoretical and Applied Genetics 124: 1–11. doi: 10.1007/s00122-012-1796-8
|
[20] | Lebeau A, Daunay MC, Frary A, Palloix A, Wang JF, et al. (2011) Bacterial wilt resistance in tomato, pepper, and eggplant: genetic resources respond to diverse strains in the ralstonia solanacearum species complex. Phytopathology 101: 154–165. doi: 10.1094/phyto-02-10-0048
|
[21] | Barchi L, Lanteri S, Portis E, Valè G, Volante A, et al. (2012) A rad tag derived marker based eggplant linkage map and the location of qtls determining anthocyanin pigmentation. PLoS ONE 7: e43740. doi: 10.1371/journal.pone.0043740
|
[22] | Rizza F, Mennella G, Collonnier C, Shiachakr D, Kashyap V, et al. (2002) Androgenic dihaploids from somatic hybrids between Solanum melongena and S. aethiopicum group gilo as a source of resistance to Fusarium oxysporum f. sp melongenae. Plant cell reports 20: 1022–1032. doi: 10.1007/s00299-001-0429-5
|
[23] | Barchi L, Lanteri S, Portis E, Stagel A, Vale G, et al. (2010) Segregation distortion and linkage analysis in eggplant (Solanum melongena L.). Genome 53: 805–815. doi: 10.1139/g10-073
|
[24] | Toppino L, Vale G, Rotino G (2008) Inheritance of Fusarium wilt resistance introgressed from Solanum aethiopicum Gilo and Aculeatum groups into cultivated eggplant (S. melongena) and development of associated PCR-based markers. Molecular Breeding 22: 237–250. doi: 10.1007/s11032-008-9170-x
|
[25] | van der Knaap E, Tanksley SD (2001) Identification and characterization of a novel locus controlling early fruit development in tomato. TAG Theoretical and Applied Genetics 103: 353–358. doi: 10.1007/s001220100623
|
[26] | Xiao H, Jiang N, Schaffner E, Stockinger EJ, van der Knaap E (2008) A retrotransposon-mediated gene duplication underlies morphological variation of tomato fruit. Science 319: 1527–1530. doi: 10.1126/science.1153040
|
[27] | Vos P, Hogers R, Bleeker M, Reijans M, van de Lee T, et al. (1995) AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res 23: 4407–4414. doi: 10.1093/nar/23.21.4407
|
[28] | Rodriguez-Burrruezo A, Prohens J, Nuez F (2008) Performance of hybrids between local varieties of eggplant (Solanum melongena) and its relation to the mean of parents and to morphological and genetic distances among parents. European Journal of Horticultural Science 73: 76–83.
|
[29] | Daunay MC (2008) Eggplant. In: J Prohens and F Nuez, editors. Handbook of plant breeding, Vegetables II: Fabaceae, Liliaceae, Umbelliferae, and Solanaceae. Springer, New York. pp. 163–220.
|
[30] | Prohens J, Plazas M, Raigón M, Seguí-Simarro J, Stommel J, et al. (2012) Characterization of interspecific hybrids and first backcross generations from crosses between two cultivated eggplants (Solanum melongena and S. aethiopicum Kumba group) and implications for eggplant breeding. Euphytica 186: 517–538. doi: 10.1007/s10681-012-0652-x
|
[31] | Collard B, Jahufer M, Brouwer J, Pang E (2005) An introduction to markers, quantitative trait loci (QTL) mapping and marker-assisted selection for crop improvement: The basic concepts. Euphytica 142: 169–196. doi: 10.1007/s10681-005-1681-5
|
[32] | Li Z, Jakkula L, Hussey RS, Tamulonis JP, Boerma HR (2001) SSR mapping and confirmation of the QTL from PI96354 conditioning soybean resistance to southern root-knot nematode. TAG Theoretical and Applied Genetics 103: 1167–1173. doi: 10.1007/s001220100672
|
[33] | Lindhout P (2002) The perspectives of polygenic resistance in breeding for durable disease resistance. Euphytica 124: 217–226. doi: 10.1023/a:1015686601404
|
[34] | Pilet-Nayel MP-N, Muehlbauer FM, McGee RM, Kraft JK, Baranger AB, et al. (2002) Quantitative trait loci for partial resistance to Aphanomyces root rot in pea. TAG Theoretical and Applied Genetics 106: 28–39. doi: 10.1094/phyto-95-1287
|
[35] | Swamy BPM, Sarla N (2008) Yield-enhancing quantitative trait loci (QTLs) from wild species. Biotechnology Advances 26: 106–120. doi: 10.1016/j.biotechadv.2007.09.005
|
[36] | de Vicente MC, Tanksley SD (1993) QTL analysis of transgressive segregation in an interspecific tomato cross. Genetics 134: 585–596.
|
[37] | Yang J, Zhu J, Williams RW (2007) Mapping the genetic architecture of complex traits in experimental populations. Bioinformatics 23: 1527–1536. doi: 10.1093/bioinformatics/btm143
|
[38] | Paran I, van der Knaap E (2007) Genetic and molecular regulation of fruit and plant domestication traits in tomato and pepper. Journal of Experimental Botany 58: 3841–3852. doi: 10.1093/jxb/erm257
|
[39] | Wu F, Eannetta N, Xu Y, Tanksley S (2009) A detailed synteny map of the eggplant genome based on conserved ortholog set II (COSII) markers. Theoretical and Applied Genetics 118: 927–935. doi: 10.1007/s00122-008-0950-9
|
[40] | Fukuoka H, Miyatake K, Nunome T, Negoro S, Shirasawa K, et al. (2012) Development of gene-based markers and construction of an integrated linkage map in eggplant by using Solanum orthologous (SOL) gene sets. TAG Theoretical and Applied Genetics 125: 47–56. doi: 10.1007/s00122-012-1815-9
|
[41] | Liu J, Van Eck J, Cong B, Tanksley SD (2002) A new class of regulatory genes underlying the cause of pear-shaped tomato fruit. Proceedings of the National Academy of Sciences 99: 13302–13306. doi: 10.1073/pnas.162485999
|
[42] | Cong B, Barrero LS, Tanksley SD (2008) Regulatory change in YABBY-like transcription factor led to evolution of extreme fruit size during tomato domestication. Nat Genet 40: 800–804. doi: 10.1038/ng.144
|
[43] | Mu?os S, Ranc N, Botton E, Bérard A, Rolland S, et al. (2011) Increase in tomato locule number is controlled by two single-nucleotide polymorphisms located near WUSCHEL. Plant Physiology 156: 2244–2254. doi: 10.1104/pp.111.173997
|
[44] | Olsen AN, Ernst HA, Leggio LL, Skriver K (2005) NAC transcription factors: structurally distinct, functionally diverse. Trends in Plant Science 10: 79–87. doi: 10.1016/j.tplants.2004.12.010
|
[45] | IBPGR (1990) Descriptors for eggplant. Rome: International Board for Plant Genetic Resources.
|
[46] | ECPGR (2008) Minimum descriptors for eggplant, capsicum (sweet and hot pepper) and tomato.
|
[47] | Team R (2009) R: a language and environment for statistical computing.
|
[48] | Lander E, Botstein D (1989) Mapping mendelian factors underlying quantitative traits using RFLP linkage maps. Genetics 121: 185–199.
|
[49] | Jansen R (1993) Interval mapping of multiple quantitative trait loci. Genetics 135: 205–211. doi: 10.1534/genetics.103.021642
|
[50] | Jansen R (1994) Controlling the type-i and type-ii errors in mapping quantitative trait loci. Genetics 138: 871–881.
|
[51] | Jansen R, Stam P (1994) High-resolution of quantitative traits into multiple loci via interval mapping. Genetics 136: 1447–1455.
|
[52] | Van Ooijen JW (2004) MapQTL 5, software for the mapping of quantitative trait loci in experimental populations. Wageningen (The Netherlands): Kyazma B V.
|
[53] | Churchill GA, Doerge RW (1994) Empirical threshold values for quantitative trait mapping. Genetics 138: 963–971.
|
[54] | Voorrips R (2002) MapChart: software for the graphical presentation of linkage maps and QTLs. Journal of Heredity 93: 77–78. doi: 10.1093/jhered/93.1.77
|
[55] | Sol Genomics Network website. Available: http://solgenomics.net/organism/Solanum_?lycopersicum/genome (Accessed 2014 January 28).
|
[56] | The Gene Index Project website. Available: http://compbio.dfci.harvard.edu/tgi/(Acc?essed 2014 January 28).
|