全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2014 

Real-Time In Vivo Imaging of Butterfly Wing Development: Revealing the Cellular Dynamics of the Pupal Wing Tissue

DOI: 10.1371/journal.pone.0089500

Full-Text   Cite this paper   Add to My Lib

Abstract:

Butterfly wings are covered with regularly arranged single-colored scales that are formed at the pupal stage. Understanding pupal wing development is therefore crucial to understand wing color pattern formation. Here, we successfully employed real-time in vivo imaging techniques to observe pupal hindwing development over time in the blue pansy butterfly, Junonia orithya. A transparent sheet of epithelial cells that were not yet regularly arranged was observed immediately after pupation. Bright-field imaging and autofluorescent imaging revealed free-moving hemocytes and tracheal branches of a crinoid-like structure underneath the epithelium. The wing tissue gradually became gray-white, epithelial cells were arranged regularly, and hemocytes disappeared, except in the bordering lacuna, after which scales grew. The dynamics of the epithelial cells and scale growth were also confirmed by fluorescent imaging. Fluorescent in vivo staining further revealed that these cells harbored many mitochondria at the surface of the epithelium. Organizing centers for the border symmetry system were apparent immediately after pupation, exhibiting a relatively dark optical character following treatment with fluorescent dyes, as well as in autofluorescent images. The wing tissue exhibited slow and low-frequency contraction pulses with a cycle of approximately 10 to 20 minutes, mainly occurring at 2 to 3 days postpupation. The pulses gradually became slower and weaker and eventually stopped. The wing tissue area became larger after contraction, which also coincided with an increase in the autofluorescence intensity that might have been caused by scale growth. Examination of the pattern of color development revealed that the black pigment was first deposited in patches in the central areas of an eyespot black ring and a parafocal element. These results of live in vivo imaging that covered wide wing area for a long time can serve as a foundation for studying the cellular dynamics of living wing tissues in butterflies.

References

[1]  Nijhout HF (1991) The development and evolution of butterfly wing patterns. Washington: Smithsonian Institution Press. 297 p.
[2]  Nijhout HF (2001) Elements of butterfly wing patterns. J Exp Zool 291: 213–225. doi: 10.1002/jez.1099
[3]  Otaki JM (2012) Color pattern analysis of nymphalid butterfly wings: Revision of the nymphalid groundplan. Zool Sci 29: 568–576. doi: 10.2108/zsj.29.568
[4]  Ghiradella H (1998) Hairs, bristles and scales. In: Harrison FW, Locke M, editors. Microscopic anatomy of invertebrates, Volume 11: Insecta. New York: John Wiley & Sons. 257–287.
[5]  Kristensen NP, Simonsen TJ (2003) Hairs and scales. In: Kristensen NP, editor. Lepidoptera, moths and butterflies: morphology, physiology, and development. Handbook of zoology, Volume IV, Anthropoda: Insecta. Berlin: Walter de Gruyter. 9–22.
[6]  Yoshida A (1988) Scale arrangement on lepidopteran wings. Special Bull Lepidopterol Soc Jpn 6: 447–464 (In Japanese)..
[7]  Yoshida A, Shinkawa T, Aoki K (1983) Periodical arrangement on lepidopteran (butterfly and moth) wings. Proc Jpn Acad 59B: 236–239. doi: 10.2183/pjab.59.236
[8]  Yoshida A, Aoki K (1989) Scale arrangement pattern in a lepidopteran wing. 1. Periodic cellular pattern in the pupal wing of Pieris rapae. Dev Growth Differ 31: 601–609. doi: 10.1111/j.1440-169x.1989.00601.x
[9]  Nijhout HF (1980) Ontogeny of the color pattern on the wings of Precis coenia. Dev Biol 80: 275–288. doi: 10.1016/0012-1606(80)90404-2
[10]  Nijhout HF (1980) Pattern formation on lepidopteran wings: determination of an eyespot. Dev Biol 80: 267–274. doi: 10.1016/0012-1606(80)90403-0
[11]  Nijhout HF (1985) Cautery-induced colour patterns in Precis coenia (Lepidoptera: Nymphalidae). J Embryol Exp Morphol 86: 191–203.
[12]  French V, Brakefield PM (1992) The development of eyespot patterns on butterfly wings: morphogen sources or sinks? Development 116: 103–109.
[13]  Brakefield PM, French V (1995) Eyespot development on butterfly wings: the epidermal response to damage. Dev Biol 168: 98–111. doi: 10.1006/dbio.1995.1064
[14]  Saenko SV, Brakefield PM, Beldade P (2010) Single locus affects embryonic segment polarity and multiple aspects of an adult evolutionary novelty. BMC Biol 8: 111. doi: 10.1186/1741-7007-8-111
[15]  Otaki JM, Ogasawara T, Yamamoto H (2005) Tungstate-induced color-pattern modifications of butterfly wings are independent of stress response and ecdysteroid effect. Zool Sci 22: 635–644. doi: 10.2108/zsj.22.635
[16]  Mahdi SH, Gima S, Tomita Y, Yamasaki H, Otaki JM (2010) Physiological characterization of the cold-shock-induced humoral factor for wing color-pattern changes in butterflies. J Insect Physiol 56: 1022–1031. doi: 10.1016/j.jinsphys.2010.02.013
[17]  Dhungel B, Otaki JM (2013) Larval temperature experience determines sensitivity to cold-shock-induced wing color pattern changes in the blue pansy butterfly Junonia orithya. J Thermal Biol 38: 427–433. doi: 10.1016/j.jtherbio.2013.06.002
[18]  Otaki JM (2007) Reversed type of color-pattern modifications of butterfly wings: a physiological mechanism of wing-wide color-pattern determination. J Insect Physiol 53: 526–537. doi: 10.1016/j.jinsphys.2007.02.005
[19]  Otaki JM (2011) Artificially induced colour-pattern changes in butterflies: dynamic signal interactions. Sci Rep 1: 111. doi: 10.1038/srep00111
[20]  Otaki JM (2012) Structural analysis of eyespots: dynamics of morphogenic signals that govern elemental positions in butterfly wings. BMC Syst Biol 6: 17. doi: 10.1186/1752-0509-6-17
[21]  Otaki JM, Ogasawara T, Yamamoto H (2005) Morphological comparison of pupal wing cuticle patterns in butterflies. Zool Sci 22: 21–34. doi: 10.2108/zsj.22.21
[22]  Dhungel B, Otaki JM (2009) Local pharmacological effects of tungstate on the color-pattern determination of butterfly wings: a possible relationship between the eyespot and parafocal element. Zool Sci 26: 758–764. doi: 10.2108/zsj.26.758
[23]  Otaki JM (2009) Color-pattern analysis of parafocal elements in butterfly wings. Entomol Sci 12: 74–83. doi: 10.1111/j.1479-8298.2009.00306.x
[24]  Otaki JM (2011) Generation of butterfly wing eyespot patterns: a model for morphological determination of eyespot and parafocal element. Zool Sci 28: 817–827. doi: 10.2108/zsj.28.817
[25]  Carroll SB, Gates J, Keys DN, Paddock SW, Panganiban GE, et al. (1994) Pattern formation and eyespot determination in butterfly wings. Science 265: 109–114. doi: 10.1126/science.7912449
[26]  Brakefield PM, Gates J, Keys D, Kesbeke F, Wijngaarden PJ, et al. (1996) Development, plasticity and evolution of butterfly eyespot patterns. Nature 384: 236–242. doi: 10.1038/384236a0
[27]  Beldade P, Brakefield PM, Long AD (2002) Contribution of Distal-less to quantitative variation in butterfly eyespots. Nature 415: 315–318. doi: 10.1038/415315a
[28]  Reed RD, Serfas MS (2004) Butterfly wing pattern evolution is associated with changes in a Notch/Distal-less temporal pattern formation process. Curr Biol 14: 1159–1166. doi: 10.1016/j.cub.2004.06.046
[29]  Monteiro A, Glaser G, Stockslager S, Glansdrop N, Ramos D (2006) Comparative insights into questions of lepidopteran wing pattern homology. BMC Dev Biol 6: 52.
[30]  Shirai LT, Saenko SV, Keller RA, Jerónimo MA, Brakefield PM, et al. (2012) Evolutionary history of the recruitment of conserved developmental genes in association to the formation and diversification of a novel trait. BMC Evol Biol 12: 21. doi: 10.1186/1471-2148-12-21
[31]  Monteiro A, Chen B, Ramos DM, Oliver JC, Tong X, et al. (2013) Distal-Less regulates eyespot patterns and melanization in Bicyclus butterflies. J Exp Zool B Mol Dev Evol 320: 321–331. doi: 10.1002/jez.b.22503
[32]  Otaki JM, Yamamoto H (2004) Species-specific color-pattern modifications of butterfly wings. Dev Growth Differ 46: 1–14. doi: 10.1111/j.1440-169x.2004.00721.x
[33]  Otaki JM (2008) Physiologically induced color-pattern changes in butterfly wings: mechanistic and evolutionary implications. J Insect Physiol 55: 174–182. doi: 10.1016/j.jinsphys.2008.05.006
[34]  Hiyama A, Taira W, Otaki JM (2012) Color-pattern evolution in response to environmental stress in butterflies. Front Genet 3: 15. doi: 10.3389/fgene.2012.00015
[35]  Kuntze H (1935) Die Flügelentwicklung bei Philosamia cynthia Drury, mit besonderer Berücksichtigung des Ge?ders der Lakunen und der Tracheensysteme. Z Morphol ?kol Tiere 30: 544–572 (In German).. doi: 10.1007/bf00403137
[36]  Kühn A (1954) Vorlesungen unber Entwicklungsphysiologie. Berlin: Springer-Verlag. (In German).
[37]  Greenstein ME (1972) The ultrastructure of developing wings in the giant silkmoth, Hyalophora cecropia. II. Scale-forming and socket-forming cells. J Morphol 136: 23–52. doi: 10.1002/jmor.1051360103
[38]  Galant R, Skeath JB, Passock S, Lewis DL, Carroll SB (1998) Expression pattern of a butterfly achaete-scute homolog reveals the homology of butterfly wing scales and insect sensory bristles. Curr Biol 8: 807–813. doi: 10.1016/s0960-9822(98)70322-7
[39]  Reed RD (2004) Evidence for Notch-mediated lateral inhibition in organizing butterfly wing scales. Dev Genes Evol 214: 43–46. doi: 10.1007/s00427-003-0366-0
[40]  Süffert F (1929) Die Ausbildung des imaginalen Flügelschnittes in der Schmetterlingspuppe. Z Morphol ?kol Tiere 14: 338–359. doi: 10.1007/bf00419303
[41]  Yoshida A, Aoki K (1989) Scale arrangement pattern along the wing margin of a small white cabbage butterfly (Lepidoptera: Pieridae). Morph Histol Fine Struct 94: 467–470. doi: 10.1603/0013-8746(2001)094[0467:bdatwm]2.0.co;2
[42]  Dohrmann CE, Nijhout HF (1990) Development of the wing margin in Precis coenia (Lepidoptera: Nymphalidae). J Res Lepidoptera 27: 151–159.
[43]  Kodama R, Yoshida A, Mitsui T (1995) Programmed cell death at the periphery of the pupal wing of the butterfly, Pieris rapae. Roux Arch Dev Biol 20: 418–426. doi: 10.1007/bf00360849
[44]  Macdonald WP, Martin A, Reed RD (2010) Butterfly wings shaped by a molecular cookie cutter: evolutionary radiation of lepidopteran wing shapes associated with a derived Cut/wingless wing margin boundary system. Evol Dev 12: 296–304. doi: 10.1111/j.1525-142x.2010.00415.x
[45]  Kusaba K, Otaki JM (2009) Positional dependence of scale size and shape in butterfly wings: wing-wide phenotypic coordination of color-pattern elements and background. J Insect Physiol 55: 174–182. doi: 10.1016/j.jinsphys.2008.11.006
[46]  Dhungel B, Otaki JM (2013) Morphometric analysis of nymphalid butterfly wings: number, size and arrangement of scales, and their implications for tissue-size determination. Entomol Sci DOI: 10.1111/ens.12046.
[47]  Koch PB, Merk R, Reinhardt R, Weber P (2003) Localization of ecdysone receptor protein during colour pattern formation in wings of the butterfly Precis coenia (Lepidoptera: Nymphalidae) and co-expression with Distal-less protein. Dev Gene Evol 212: 571–584.
[48]  Ohno Y, Otaki JM (2012) Eyespot colour pattern determination by serial induction in fish: Mechanistic convergence with butterfly eyespots. Sci Rep 2: 290. doi: 10.1038/srep00290
[49]  Henke K (1946) über die verschiedenen Zellteilungsvorgange in der Entwicklung des beschuppten Flügelepithels der Mehlmotte Ephestia kühniella Z. Biologisches Zentralblatt 65, 120–135. (In German).
[50]  Henke K, Pohley H-J (1952) Differentielle Zellteilungen und Polyploedie bei der Schuppenbildung der Mehlmotte Ephestia kühniella. Z Naturforsch Abt B 7: 65–79 (In German)..
[51]  Cho EH, Nijhout HF (2012) Development of polyploidy of scale-building cells in the wings of Manduca sexta. Arthropod Struct Dev 42, 37–46.
[52]  Otaki JM (2011) Color-pattern analysis of eyespots in butterfly wings: a critical examination of morphogen gradient models. Zool Sci 28: 403–413. doi: 10.2108/zsj.28.403
[53]  Iwata M, Hiyama A, Otaki JM (2013) System-dependent regulations of colour-pattern development: a mutagenesis study of the pale grass blue butterfly Zizeeria maha. Sci Rep 3: 2379. doi: 10.1038/srep02379
[54]  Alexandre C, Baena-Lopez A, Vincent J-P (2014) Patterning and growth control by membrane-tethered Wingless. Nature 505: 180–185. doi: 10.1038/nature12879
[55]  Dhungel B, Ohno Y, Matayoshi R, Otaki JM (2013) Baculovirus-mediated gene transfer in butterfly wings in vivo: an efficient expression system with an anti-gp64 antibody. BMC Biotechnol 13: 27. doi: 10.1186/1472-6750-13-27

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133