全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2014 

Protective Effect of Quercetin on the Development of Preimplantation Mouse Embryos against Hydrogen Peroxide-Induced Oxidative Injury

DOI: 10.1371/journal.pone.0089520

Full-Text   Cite this paper   Add to My Lib

Abstract:

Quercetin, a plant-derived flavonoid in Chinese herbs, fruits and wine, displays antioxidant properties in many pathological processes associated with oxidative stress. However, the effect of quercetin on the development of preimplantation embryos under oxidative stress is unclear. The present study sought to determine the protective effect and underlying mechanism of action of quercetin against hydrogen peroxide (H2O2)-induced oxidative injury in mouse zygotes. H2O2 treatment impaired the development of mouse zygotes in vitro, decreasing the rates of blastocyst formation and hatched, and increasing the fragmentation, apoptosis and retardation in blastocysts. Quercetin strongly protected zygotes from H2O2-induced oxidative injury by decreasing the reactive oxygen species level, maintaining mitochondrial function and modulating total antioxidant capability, the activity of the enzymatic antioxidants, including glutathione peroxidase and catalase activity to keep the cellular redox environment. Additionally, quercetin had no effect on the level of glutathione, the main non-enzymatic antioxidant in embryos.

References

[1]  Blake DA, Farquhar CM, Johnson N, Proctor M (2007) Cleavage stage versus blastocyst stage embryo transfer in assisted conception. Cochrane Database Syst Rev: CD002118.
[2]  Papanikolaou EG, Kolibianakis EM, Tournaye H, Venetis CA, Fatemi H, et al. (2008) Live birth rates after transfer of equal number of blastocysts or cleavage-stage embryos in IVF. A systematic review and meta-analysis. Hum Reprod 23: 91–99. doi: 10.1093/humrep/dem339
[3]  Sills ES, Palermo GD (2010) Human blastocyst culture in IVF: current laboratory applications in reproductive medicine practice. Rom J Morphol Embryol 51: 441–445.
[4]  Sepulveda S, Garcia J, Arriaga E, Diaz J, Noriega-Portella L, et al. (2009) In vitro development and pregnancy outcomes for human embryos cultured in either a single medium or in a sequential media system. Fertil Steril 91: 1765–1770. doi: 10.1016/j.fertnstert.2008.02.169
[5]  Guerin P, El Mouatassim S, Menezo Y (2001) Oxidative stress and protection against reactive oxygen species in the pre-implantation embryo and its surroundings. Hum Reprod Update 7: 175–189. doi: 10.1093/humupd/7.2.175
[6]  Ciray HN, Aksoy T, Yaramanci K, Karayaka I, Bahceci M (2009) In vitro culture under physiologic oxygen concentration improves blastocyst yield and quality: a prospective randomized survey on sibling oocytes. Fertil Steril 91: 1459–1461. doi: 10.1016/j.fertnstert.2008.07.1707
[7]  Waldenstrom U, Engstrom AB, Hellberg D, Nilsson S (2009) Low-oxygen compared with high-oxygen atmosphere in blastocyst culture, a prospective randomized study. Fertil Steril 91: 2461–2465. doi: 10.1016/j.fertnstert.2008.03.051
[8]  Kovacic B, Vlaisavljevic V (2008) Influence of atmospheric versus reduced oxygen concentration on development of human blastocysts in vitro: a prospective study on sibling oocytes. Reprod Biomed Online 17: 229–236. doi: 10.1016/s1472-6483(10)60199-x
[9]  Agarwal A, Aponte-Mellado A, Premkumar BJ, Shaman A, Gupta S (2012) The effects of oxidative stress on female reproduction: a review. Reprod Biol Endocrinol 10: 49. doi: 10.1186/1477-7827-10-49
[10]  Lopes AS, Lane M, Thompson JG (2010) Oxygen consumption and ROS production are increased at the time of fertilization and cell cleavage in bovine zygotes. Hum Reprod 25: 2762–2773. doi: 10.1093/humrep/deq221
[11]  Liu L, Trimarchi JR, Keefe DL (2000) Involvement of mitochondria in oxidative stress-induced cell death in mouse zygotes. Biol Reprod 62: 1745–1753. doi: 10.1095/biolreprod62.6.1745
[12]  Zhang C, Liu C, Li D, Yao N, Yuan X, et al. (2010) Intracellular redox imbalance and extracellular amino acid metabolic abnormality contribute to arsenic-induced developmental retardation in mouse preimplantation embryos. J Cell Physiol 222: 444–455. doi: 10.1002/jcp.21966
[13]  Kitagawa Y, Suzuki K, Yoneda A, Watanabe T (2004) Effects of oxygen concentration and antioxidants on the in vitro developmental ability, production of reactive oxygen species (ROS), and DNA fragmentation in porcine embryos. Theriogenology 62: 1186–1197. doi: 10.1016/j.theriogenology.2004.01.011
[14]  Igosheva N, Abramov AY, Poston L, Eckert JJ, Fleming TP, et al. (2010) Maternal diet-induced obesity alters mitochondrial activity and redox status in mouse oocytes and zygotes. PLoS One 5: e10074. doi: 10.1371/journal.pone.0010074
[15]  Devine PJ, Perreault SD, Luderer U (2012) Roles of reactive oxygen species and antioxidants in ovarian toxicity. Biol Reprod 86: 27. doi: 10.1095/biolreprod.111.095224
[16]  Morales H, Tilquin P, Rees JF, Massip A, Dessy F, et al. (1999) Pyruvate prevents peroxide-induced injury of in vitro preimplantation bovine embryos. Mol Reprod Dev 52: 149–157. doi: 10.1002/(sici)1098-2795(199902)52:2<149::aid-mrd5>3.0.co;2-4
[17]  Suzuki C, Yoshioka K, Sakatani M, Takahashi M (2007) Glutamine and hypotaurine improves intracellular oxidative status and in vitro development of porcine preimplantation embryos. Zygote 15: 317–324. doi: 10.1017/s0967199407004273
[18]  Thiyagarajan B, Valivittan K (2009) Ameliorating effect of vitamin E on in vitro development of preimplantation buffalo embryos. J Assist Reprod Genet 26: 217–225. doi: 10.1007/s10815-009-9302-1
[19]  Kelly GS (2011) Quercetin. Monograph. Altern Med Rev 16: 172–194.
[20]  Heim KE, Tagliaferro AR, Bobilya DJ (2002) Flavonoid antioxidants: chemistry, metabolism and structure-activity relationships. J Nutr Biochem 13: 572–584. doi: 10.1016/s0955-2863(02)00208-5
[21]  Sandhir R, Mehrotra A (2013) Quercetin supplementation is effective in improving mitochondrial dysfunctions induced by 3-nitropropionic acid: implications in Huntington's disease. Biochim Biophys Acta 1832: 421–430. doi: 10.1016/j.bbadis.2012.11.018
[22]  Ghosh A, Sarkar S, Mandal AK, Das N (2013) Neuroprotective role of nanoencapsulated quercetin in combating ischemia-reperfusion induced neuronal damage in young and aged rats. PLoS One 8: e57735. doi: 10.1371/journal.pone.0057735
[23]  Kumar Mishra S, Singh P, Rath SK (2013) Protective effect of quercetin on chloroquine-induced oxidative stress and hepatotoxicity in mice. Malar Res Treat 2013: 141734. doi: 10.1155/2013/141734
[24]  Jeong SM, Kang MJ, Choi HN, Kim JH, Kim JI (2012) Quercetin ameliorates hyperglycemia and dyslipidemia and improves antioxidant status in type 2 diabetic db/db mice. Nutr Res Pract 6: 201–207. doi: 10.4162/nrp.2012.6.3.201
[25]  Carrasco-Pozo C, Mizgier ML, Speisky H, Gotteland M (2012) Differential protective effects of quercetin, resveratrol, rutin and epigallocatechin gallate against mitochondrial dysfunction induced by indomethacin in Caco-2 cells. Chem Biol Interact 195: 199–205. doi: 10.1016/j.cbi.2011.12.007
[26]  Nabavi SF, Nabavi SM, Latifi AM, Mirzaei M, Habtemariam S, et al. (2012) Mitigating role of quercetin against sodium fluoride-induced oxidative stress in the rat brain. Pharm Biol 50: 1380–1383. doi: 10.3109/13880209.2012.675341
[27]  Mi Y, Zhang C, Li C, Taneda S, Watanabe G, et al. (2010) Quercetin attenuates oxidative damage induced by treatment of embryonic chicken spermatogonial cells with 4-nitro-3-phenylphenol in diesel exhaust particles. Biosci Biotechnol Biochem 74: 934–938. doi: 10.1271/bbb.90740
[28]  Anjaneyulu M, Chopra K (2004) Quercetin, an anti-oxidant bioflavonoid, attenuates diabetic nephropathy in rats. Clin Exp Pharmacol Physiol 31: 244–248. doi: 10.1111/j.1440-1681.2004.03982.x
[29]  Tangsaengvit N, Kitphati W, Tadtong S, Bunyapraphatsara N, Nukoolkarn V (2013) Neurite Outgrowth and Neuroprotective Effects of Quercetin from Caesalpinia mimosoides Lamk. on Cultured P19-Derived Neurons. Evid Based Complement Alternat Med 2013: 838051. doi: 10.1155/2013/838051
[30]  Youl E, Bardy G, Magous R, Cros G, Sejalon F, et al. (2010) Quercetin potentiates insulin secretion and protects INS-1 pancreatic beta-cells against oxidative damage via the ERK1/2 pathway. Br J Pharmacol 161: 799–814. doi: 10.1111/j.1476-5381.2010.00910.x
[31]  Ou XH, Li S, Wang ZB, Li M, Quan S, et al. (2012) Maternal insulin resistance causes oxidative stress and mitochondrial dysfunction in mouse oocytes. Hum Reprod 27: 2130–2145. doi: 10.1093/humrep/des137
[32]  Zhang W, Miao J, Wang S, Zhang Y (2013) The Protective Effects of Beta-Casomorphin-7 against Glucose -Induced Renal Oxidative Stress In Vivo and Vitro. PLoS One 8: e63472. doi: 10.1371/journal.pone.0063472
[33]  He Z, Sun X, Mei G, Yu S, Li N (2008) Nonclassical secretion of human catalase on the surface of CHO cells is more efficient than classical secretion. Cell Biol Int 32: 367–373. doi: 10.1016/j.cellbi.2007.12.003
[34]  Thouas GA, Trounson AO, Wolvetang EJ, Jones GM (2004) Mitochondrial dysfunction in mouse oocytes results in preimplantation embryo arrest in vitro. Biol Reprod 71: 1936–1942. doi: 10.1095/biolreprod.104.033589
[35]  Suematsu N, Hosoda M, Fujimori K (2011) Protective effects of quercetin against hydrogen peroxide-induced apoptosis in human neuronal SH-SY5Y cells. Neurosci Lett 504: 223–227. doi: 10.1016/j.neulet.2011.09.028
[36]  Mi Y, Zhang C, Taya K (2007) Quercetin protects spermatogonial cells from 2,4-d-induced oxidative damage in embryonic chickens. J Reprod Dev 53: 749–754. doi: 10.1262/jrd.19001
[37]  Bayir H, Kagan VE (2008) Bench-to-bedside review: Mitochondrial injury, oxidative stress and apoptosis – there is nothing more practical than a good theory. Crit Care 12: 206. doi: 10.1186/cc6779
[38]  Jazvinscak Jembrek M, Vukovic L, Puhovic J, Erhardt J, Orsolic N (2012) Neuroprotective effect of quercetin against hydrogen peroxide-induced oxidative injury in P19 neurons. J Mol Neurosci 47: 286–299. doi: 10.1007/s12031-012-9737-1
[39]  Park C, So HS, Shin CH, Baek SH, Moon BS, et al. (2003) Quercetin protects the hydrogen peroxide-induced apoptosis via inhibition of mitochondrial dysfunction in H9c2 cardiomyoblast cells. Biochem Pharmacol 66: 1287–1295. doi: 10.1016/s0006-2952(03)00478-7
[40]  Kimura N, Tsunoda S, Iuchi Y, Abe H, Totsukawa K, et al. (2010) Intrinsic oxidative stress causes either 2-cell arrest or cell death depending on developmental stage of the embryos from SOD1-deficient mice. Mol Hum Reprod 16: 441–451. doi: 10.1093/molehr/gaq007
[41]  Guzy J, Kusnir J, Marekova M, Chavkova Z, Dubayova K, et al. (2003) Effect of quercetin on daunorubicin-induced heart mitochondria changes in rats. Physiol Res 52: 773–780.
[42]  Baek IJ, Yon JM, Lee BJ, Yun YW, Yu WJ, et al. (2005) Expression pattern of cytosolic glutathione peroxidase (cGPx) mRNA during mouse embryogenesis. Anat Embryol (Berl) 209: 315–321. doi: 10.1007/s00429-004-0447-5
[43]  Abramov JP, Wells PG (2011) Embryonic catalase protects against endogenous and phenytoin-enhanced DNA oxidation and embryopathies in acatalasemic and human catalase-expressing mice. FASEB J 25: 2188–2200. doi: 10.1096/fj.11-182444
[44]  Gitika B, Sai Ram M, Sharma SK, Ilavazhagan G, Banerjee PK (2006) Quercetin protects C6 glial cells from oxidative stress induced by tertiary-butylhydroperoxide. Free Radic Res 40: 95–102. doi: 10.1080/10715760500335447
[45]  Ishige K, Schubert D, Sagara Y (2001) Flavonoids protect neuronal cells from oxidative stress by three distinct mechanisms. Free Radic Biol Med 30: 433–446. doi: 10.1016/s0891-5849(00)00498-6
[46]  Johnson MK, Loo G (2000) Effects of epigallocatechin gallate and quercetin on oxidative damage to cellular DNA. Mutat Res 459: 211–218. doi: 10.1016/s0921-8777(99)00074-9
[47]  Perez-Pasten R, Martinez-Galero E, Chamorro-Cevallos G (2010) Quercetin and naringenin reduce abnormal development of mouse embryos produced by hydroxyurea. J Pharm Pharmacol 62: 1003–1009. doi: 10.1111/j.2042-7158.2010.01118.x

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133