全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2014 

Intra- and Interspecific Differences in Diet Quality and Composition in a Large Herbivore Community

DOI: 10.1371/journal.pone.0084756

Full-Text   Cite this paper   Add to My Lib

Abstract:

Species diversity in large herbivore communities is often explained by niche segregation allowed by differences in body mass and digestive morphophysiological features. Based on large number of gut samples in fall and winter, we analysed the temporal dynamics of diet composition, quality and interspecific overlap of 4 coexisting mountain herbivores. We tested whether the relative consumption of grass and browse differed among species of different rumen types (moose-type and intermediate-type), whether diet was of lower quality for the largest species, whether we could identify plant species which determined diet quality, and whether these plants, which could be “key-food-resources” were similar for all herbivores. Our analyses revealed that (1) body mass and rumen types were overall poor predictors of diet composition and quality, although the roe deer, a species with a moose-type rumen was confirmed as an “obligatory non grazer”, while red deer, the largest species, had the most lignified diet; (2) diet overlap among herbivores was well predicted by rumen type (high among species of intermediate types only), when measured over broad plant groups, (3) the relationship between diet composition and quality differed among herbivore species, and the actual plant species used during winter which determined the diet quality, was herbivore species-specific. Even if diets overlapped to a great extent, the species-specific relationships between diet composition and quality suggest that herbivores may select different plant species within similar plant group types, or different plant parts and that this, along with other behavioural mechanisms of ecological niche segregation, may contribute to the coexistence of large herbivores of relatively similar body mass, as observed in mountain ecosystems.

References

[1]  Hopcraft JGC, Olff H, Sinclair ARE (2010) Herbivores, resources and risks: alternating regulation along primary environmental gradients in savannas. Trends Ecol Evol 25: 119–128. doi: 10.1016/j.tree.2009.08.001
[2]  Bell R (1970) The use of the herb layer by grazing ungulates in the Serengeti. In: Watson A, editor. Animal population in relation to their food resources. Oxford, England: Blackwell Scientific. 111–123.
[3]  Jarman PJ (1974) The social organisation of antelope in relation to their ecology. Behaviour 48: 215–267. doi: 10.1163/156853974x00345
[4]  Demment MW, Van Soest PJ (1985) A nutritional explanation for body-size patterns of ruminant and nonruminant herbivores. Am Nat 40: 641–672. doi: 10.1086/284369
[5]  Relyea RA, Lawrence RK, Demarais S (2000) Home range of desert mule deer: testing the body-size and habitat-productivity hypotheses. J Wildlife Manage 64: 146–153. doi: 10.2307/3802984
[6]  Van Wieren SE (1996) Digestive strategies in ruminants and nonruminants. PhD Thesis, University of Wageningen.
[7]  Fritz H, Loison A (2006). Large herbivores across biomes. In: Danell K, Duncan P, Bergstr?m R, Pastor J, editors. Large herbivore ecology, ecosystem dynamics and conservation. Cambridge: Cambridge University Press. 19–49.
[8]  Van Horne B (1983) Density as a misleading indicator of habitat quality. J Wildlife Manage: 893–901.
[9]  Hobbs NT, Hanley TA (1990) Habitat evaluation: do use/availability data reflect carrying capacity? J Wildlife Manage54: 515–522. doi: 10.2307/3809344
[10]  Fritz H, Loreau M, Chamaillé-Jammes S, Valeix M, Clobert J (2011) A food web perspective on large herbivore community limitation. Ecography 34: 196–202. doi: 10.1111/j.1600-0587.2010.06537.x
[11]  Bell R (1971) A grazing ecosystem in the Serengeti. Sci. Am. 225: 86–93. doi: 10.1038/scientificamerican0771-86
[12]  Müller DWH, Codron D, Meloro C, Munn AJ, Scharm A, et al. (2013) Assessing the Jarman-Bell principle: scaling of intake, digestibility, retention time and gut fill with body mass in mammalian herbivores. Comp Biochem Phys A 164: 129–140. doi: 10.1016/j.cbpa.2012.09.018
[13]  Clauss M, Hofmann RR, Streich WJ, Fickel J, Hummel J (2008) Higher masseter muscle mass in grazing than in browsing ruminants. Oecologia 157: 377–385. doi: 10.1007/s00442-008-1093-z
[14]  Hoffmann RR, Stewart DRM (1972) Grazer or browser: a classification based on the stomach structure and feeding habits of east African ruminants. Mammalia 36: 226–240. doi: 10.1515/mamm.1972.36.2.226
[15]  Gagnon M, Chew AM (2000) Dietary preferences in extant African bovidae. J Mammal 81: 490–511. doi: 10.1644/1545-1542(2000)081<0490:dpieab>2.0.co;2
[16]  Hoffmann RR (1989) Evolutionary steps of ecophysiological adaptation and diversification of ruminants- a comparative view of their digestive system. Oecologia 78: 443–457. doi: 10.1007/bf00378733
[17]  Bryant JP, Provenza FD, Pastor J, Reichardt PB, Clausen TP, et al. (1991) Interactions between woody plants and browsing mammals mediated by secondary metabolites. Annu Rev Ecol Syst 22: 431–446. doi: 10.1146/annurev.es.22.110191.002243
[18]  Verheyden-Tixier H, Renaud PC, Morellet N, Jamot J, Besle JM, et al. (2008) Selection for nutrients by red deer hinds feeding on a mixed forest edge. Oecologia 156: 715–726. doi: 10.1007/s00442-008-1020-3
[19]  Codron D, Lee-Thorp JA, Sponheimer M, Codron J (2007) Nutritional content of savanna plant foods: implications for browser/grazer models of ungulate diversification. Eur J Wildlife Res 53: 100–111. doi: 10.1007/s10344-006-0071-1
[20]  Clauss M, Hume ID, Hummel J (2010) Evolutionary adaptations of ruminants and their potential relevance for modern production systems. Animal 4: 979–992. doi: 10.1017/s1751731110000388
[21]  Clauss M, Lechner-Doll M, Streich WJ (2003) Ruminant diversification as an adaptation to the physicomechanical characteristics of forage. A reevaluation of an old debate and a new hypothesis. Oikos 102: 253–262. doi: 10.1034/j.1600-0706.2003.12406.x
[22]  Fritz J, Hummel J, Kienzle E, Arnold C, Nunn C, et al. (2009) Comparative chewing efficiency in mammalian herbivores. Oikos 118: 1623–1632. doi: 10.1111/j.1600-0706.2009.17807.x
[23]  Codron D, Codron J, Lee-Thorp J, Sponheimer M, De Ruiter D, et al. (2007) Diets of savanna ungulates from stable carbon isotope composition of faeces. Journal of Zoology 273: 21–29. doi: 10.1111/j.1469-7998.2007.00292.x
[24]  Illius AW, O’Connor TG (2000) Resource heterogeneity and ungulate population dynamics. Oikos 89: 283–294. doi: 10.1034/j.1600-0706.2000.890209.x
[25]  Gordon IJ, Illius AW (1989) Resource partitioning by ungulates on the isle of Rhum. Oecologia 79: 383–389. doi: 10.1007/bf00384318
[26]  Illius AW (2006) Linking functional responses and foraging behaviour to population dynamics. In: Danell K, Bergstrom R., Duncan P., Pastor J, editors. Large herbivore ecology, ecosystem dynamics and conservation. New York, USA: Cambridge University Press. 71–96.
[27]  Bertolino S, Di Montezemolo NC, Bassano B (2009) Food–niche relationships within a guild of alpine ungulates including an introduced species. J Zool 277: 63–69. doi: 10.1111/j.1469-7998.2008.00512.x
[28]  Putman RJ (1996) Competition and resource partitioning in temperate ungulate assemblies. London: Chapman & Hall. 131p.
[29]  Loison A, To?go C, Gaillard J-M (2003) Large herbivores in European alpine ecosystems: current status and challenges for the future. ?n: Nagy L, Grabherr G, K?rner C Thompson DBA, editors. Alpine Biodiversity in Europe. Berlin: Springer. 351–366.
[30]  Schr?der J, Schr?der W (1984) Niche breadth and overlap in red deer Cervus elaphus, roe deer, Capreolus capreolus, and chamois Rupicapra rupicapra. Acta Zool Fenn.
[31]  Hereldova M (1996) Dietary overlap of three ungulate species in the Palava biosphere reserve. Forest Ecol Manag 88: 139–142. doi: 10.1016/s0378-1127(96)03819-4
[32]  Homolka M, Hereldova M (2001) Native red deer and introduced chamois: foraging habits and competition in a subalpine meadow-spruce forest area. Folia Zool 50: 89–98.
[33]  Marchand P, Redjadj C, Garel M, Cugnasse JM, Maillard D, et al. (2013) Are mouflon Ovis gmelini musimon really grazers? a review of variation in diet composition. Mammal Rev 43: 275–291. doi: 10.1111/mam.12000
[34]  Codron D, Clauss M (2010) Rumen physiology constrains diet niche: linking digestive physiology and food selection across wild ruminant species. Can J Zool 88: 1129–1138. doi: 10.1139/z10-077
[35]  Boissier J (2005) Guide d’interprétation des habitats naturels du massif des bauges. Conservatoire Botanique National Alpin 140.
[36]  Darmon G, Calenge C, Loison A, Maillard D, Jullien J-M (2007) Social and spatial patterns determine the population structure and colonization processes in mouflon. Can J Zool 85: 634–643. doi: 10.1139/z07-040
[37]  Chamrad AD, Box TW (1964) A point frame for sampling rumen contents. J Wildlife Manage 40: 473–477. doi: 10.2307/3798199
[38]  Storms D, Aubry P, Hamann J-L, Said S, Fritz H, et al. (2008) Seasonal variation in diet composition and similarity of sympatric red deer Cervus elaphus and roe deer Capreolus capreolus. Wildlife Biol 14: 237–250. doi: 10.2981/0909-6396(2008)14[237:svidca]2.0.co;2
[39]  Stuth J, Jama A, Tolleson D (2003) Direct and indirect means of predicting forage quality through near infrared reflectance spectroscopy. Field Crops Res 84: 45–56. doi: 10.1016/s0378-4290(03)00140-0
[40]  Van Soest PJ, Robertson JB, Lewis BA (1991) Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J Dairy Sci 74: 3583–3597.
[41]  Tenenhaus M (1995) A partial least squares approach to multiple regression, redundancy analysis and canonical analysis. Rev Stat Appl 43: 7–63.
[42]  Thuriès L, Bastianelli D, Davrieux F, Bonnal L, Oliver R, et al. (2005) Prediction by near infrared spectroscopy of the composition of plant raw materials from the organic fertiliser industry and of crop residues from tropical agrosystems. J Near Infrared Spec 13: 187–199. doi: 10.1255/jnirs.537
[43]  Dixon R, Coates D (2009) Review: near infrared spectroscopy of faeces to evaluate the nutrition and physiology of herbivores. J Near Infrared Spec 17: 1–31. doi: 10.1255/jnirs.822
[44]  Mysterud A (2000) Diet overlap among ruminants in Fennoscandia. Oecologia 124: 130–137. doi: 10.1007/s004420050032
[45]  Hanski I (1978) Some comments on the measurement of niche metrics. Ecology : 168–174.
[46]  Abrams P (1980) Some comments on measuring niche overlap. Ecology : 44–49.
[47]  Schoener TW (1968) The Anolis lizards of Bimini: resource partitioning in a complex fauna. Ecology : 704–726.
[48]  de Longh HH, de Jong CB, van Gaethem J, Klop E, Brunsting AMH (2011) Resource partitioning among African savanna herbivores in north Cameroon: the importance of diet composition, food quality and body mass. J Trop Ecol 27: 503–513. doi: 10.1017/s0266467411000307
[49]  Doledec S, Chessel D (1987) Seasonal successions and spatial variables in freshwater environments. complete two-way layout by projection of variables. Acta Oecol, Oec Gen 8: 403–426.
[50]  Pinheiro JC, Bates DM (2000) Linear mixed-effects models: basic concepts and examples. New York: Springer.
[51]  Zuur AF, Ieno EN, Walker NJ, Saveliev AA, Smith GM (2009) Zero-truncated and zero-inflated models for count data. In: Zuur AF, Ieno EN, Walker NJ, Saveliev AA, Smith GM, editors. Mixed effects models and extensions in ecology with R. New York: Springer. 261–293.
[52]  Burnham KP, Anderson DR (2002) Model selection and multi-model inference: a practical information-theoretic approach. New York: Springer.
[53]  Dray S, Chessel D, Thioulouse J (2003) Co-inertia analysis and the linking of ecological data tables. Ecology 84: 3078–3089. doi: 10.1890/03-0178
[54]  Tixier H, Duncan P (1996) Are european roe deer browsers? A review of variations in the composition of their diets. Rev Ecol- Terre Vie 51: 3–17.
[55]  Kleynhans EJ, Jolles AE, Bos MR, Olff H (2011) Resource partitioning along multiple niche dimensions in differently sized African savanna grazers. Oikos 120: 591–600. doi: 10.1111/j.1600-0706.2010.18712.x
[56]  Chessel D, Dufour A, Thioulouse J (2004) The ade4 package. R News 4: 5–10.
[57]  Gross J (2006) Mortest: Tests for normality. R package version 1.
[58]  Duncan AJ, Poppi DP (2008) Nutritional ecology of grazing and browsing ruminants. In: Gordon IJ, Prins HHT. The ecology of browsing and grazing. Berlin: Springer. 89–116.
[59]  Clauss M, Hummel J, Streich WJ (2006) The dissociation of the fluid and particle phase in the forestomach as a physiological characteristic of large grazing ruminants: an evaluation of available, comparable ruminant passage data. Eur J Wildlife Res 52: 88–98. doi: 10.1007/s10344-005-0024-0
[60]  Cerling TE, Harris JM, Passey BH (2003) Diets of east african bovidae based on stable isotope analysis. J Mammal 84: 456–470. doi: 10.1644/1545-1542(2003)084<0456:doeabb>2.0.co;2
[61]  Abbas F, Morellet N, Hewison AM, Merlet J, Cargnelutti B, et al. (2011) Landscape fragmentation generates spatial variation of diet composition and quality in a generalist herbivore. Oecologia 167: 401–411. doi: 10.1007/s00442-011-1994-0
[62]  Gonzalez G, Crampe J-P (2001) Mortality patterns in a protected population of isards (Rupicapra pyrenaica). Can J Zool 79: 2072–2079. doi: 10.1139/cjz-79-11-2072
[63]  Prins HHT, De Boer WF, Van Oeveren H, Correia A, Mafuca J, et al. (2006) Co-existence and niche segregation of three small bovid species in southern Mozambique. Afr J Ecol 44: 186–198. doi: 10.1111/j.1365-2028.2006.00619.x
[64]  Darmon G, Calenge C, Loison A, Jullien J-M, Maillard D, et al. (2012) Spatial distribution and habitat selection in coexisting species of mountain ungulates. Ecography 35: 44–53. doi: 10.1111/j.1600-0587.2011.06664.x
[65]  Cromsigt JP, Prins HH, Olff H (2009) Habitat heterogeneity as a driver of ungulate diversity and distribution patterns: interaction of body mass and digestive strategy. Diversity and Distributions 15: 513–522. doi: 10.1111/j.1472-4642.2008.00554.x
[66]  Codron D, Brink JS, Rossouw L, Clauss M (2008) The evolution of ecological specialization in southern African ungulates: competition-or physical environmental turnover? Oikos 117: 344–353. doi: 10.1111/j.2007.0030-1299.16387.x
[67]  Valentini A, Miquel C, Nawaz MA, Bellemain E, Coissac E, et al. (2009) New perspectives in diet analysis based on DNA barcoding and parallel pyrosequencing: the trnl approach. Mol Ecol Res 9: 51–60. doi: 10.1111/j.1755-0998.2008.02352.x
[68]  Yoccoz NG, Delestrade A, Loison A (2011) Impact of climatic change on alpine ecosystems: inference and prediction. Rev Geogr Alp 98. DOI:10.4000/rga.1279.
[69]  Raye G, Miquel C, Coissac E, Redjadj C, Loison A, et al. (2011) New insights on diet variability revealed by DNA barcoding and high-throughput pyrosequencing: chamois diet in autumn as a case study. Ecol Res 26: 265–276. doi: 10.1007/s11284-010-0780-5
[70]  Prins HHT, Fritz H (2008) Species diversity of browsing and grazing ungulates: consequences for the structure and abundance of secondary production In: Gordon IJ, Prins HHT. The ecology of browsing and grazing. Berlin: Springer. 179–200.
[71]  Pettorelli N, Gaillard JM, Van Laere G, Duncan P, Kjellander P, et al. (2002) Variations in adult body mass in roe deer: the effects of population density at birth and of habitat quality. P R Soc B 269: 747–753. doi: 10.1098/rspb.2001.1791
[72]  Gaillard JM, Hebblewhite M, Loison A, Fuller M, Powell R, et al. (2010) Habitat–performance relationships: finding the right metric at a given spatial scale. Philos T R Soc B 365: 2255–2265. doi: 10.1098/rstb.2010.0085
[73]  Kamler J (2001) Morphological variability of forestomach mucosal membrane in red deer, fallow deer, roe deer and mouflon. Small Ruminant Res 41: 101–107. doi: 10.1016/s0921-4488(01)00206-1
[74]  Clauss M, Fritz J, Bayer D, Hummel J, Streich WJ, et al. (2009) Physical characteristics of rumen contents in two small ruminants of different feeding type, the mouflon Ovis ammon musimon and the roe deer Capreolus capreolus. Zoology 112: 195–205. doi: 10.1016/j.zool.2008.08.001
[75]  Garel M, Cugnasse J-M, Maillard D, Gaillard JM, Hewison AM, et al. (2007) Selective harvesting and habitat loss produce long-term life history changes in a mouflon population. Ecol Appl 17: 1607–1618. doi: 10.1890/06-0898.1
[76]  Clauss M, Hoffmann RR, Streich WJ, Fickel J, Hummel J (2010) Convergence in the macroscopic anatomy ot the reticulum in wild ruminant species of different feeding types and a new resulting hypothesis on reticular function. J Zool 281: 26–38. doi: 10.1111/j.1469-7998.2009.00675.x
[77]  Garcia-Gonzalez R, Cuartas P (1996) Trophic utilization of a montane/subalpine forest by chamois Rupicapra pyrenaica in the central Pyrenees. Forest Ecol Manag 88: 15–23. doi: 10.1016/s0378-1127(96)03805-4
[78]  Behrend A, Lechner-Doll M, Streich WJ, Clauss M (2004) Seasonal faecal excretion, gut fill, liquid and particle marker retention in mouflon Ovis ammon musimon, and a comparison with roe deer Capreolus capreolus. Acta Theriol 49: 503–515. doi: 10.1007/bf03192594
[79]  Cransac N, Valet G, Cugnasse J-M, Rech J (1997) Seasonal diet of mouflon (Ovis gmelini): comparison of population sub-units and sex-age classes. Rev Ecol- Terre Vie 52: 21–36.
[80]  Bonenfant C, Gaillard J-M, Klein F, Loison A (2002) Sex-and age-dependent effects of population density on life history traits of red deer Cervus elaphus in a temperate forest. Ecography 25: 446–458. doi: 10.1034/j.1600-0587.2002.250407.x
[81]  Clauss M, Fritz J, Bayer D, Nygren K, Hammer S, et al. (2009) Physical characteristics of rumen contents in four large ruminants of different feeding type, the addax (Addax nasomaculatus), bison (Bison bison), red deer (Cervus elaphus) and moose (Alces alces). Comp Biochem Physiol A 152: 398–406. doi: 10.1016/j.cbpa.2008.11.009
[82]  Gebert C, Verheyden-Tixier H (2001) Variations of diet composition of red deer (Cervus elaphus) in Europe. Mammal Rev 31: 189–201. doi: 10.1046/j.1365-2907.2001.00090.x

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133