全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2014 

Genome and Transcriptome Analysis of the Basidiomycetous Yeast Pseudozyma antarctica Producing Extracellular Glycolipids, Mannosylerythritol Lipids

DOI: 10.1371/journal.pone.0086490

Full-Text   Cite this paper   Add to My Lib

Abstract:

Pseudozyma antarctica is a non-pathogenic phyllosphere yeast known as an excellent producer of mannosylerythritol lipids (MELs), multi-functional extracellular glycolipids, from vegetable oils. To clarify the genetic characteristics of P. antarctica, we analyzed the 18 Mb genome of P. antarctica T-34. On the basis of KOG analysis, the number of genes (219 genes) categorized into lipid transport and metabolism classification in P. antarctica was one and a half times larger than that of yeast Saccharomyces cerevisiae (140 genes). The gene encoding an ATP/citrate lyase (ACL) related to acetyl-CoA synthesis conserved in oleaginous strains was found in P. antarctica genome: the single ACL gene possesses the four domains identical to that of the human gene, whereas the other oleaginous ascomycetous species have the two genes covering the four domains. P. antarctica genome exhibited a remarkable degree of synteny to U. maydis genome, however, the comparison of the gene expression profiles under the culture on the two carbon sources, glucose and soybean oil, by the DNA microarray method revealed that transcriptomes between the two species were significantly different. In P. antarctica, expression of the gene sets relating fatty acid metabolism were markedly up-regulated under the oily conditions compared with glucose. Additionally, MEL biosynthesis cluster of P. antarctica was highly expressed regardless of the carbon source as compared to U. maydis. These results strongly indicate that P. antarctica has an oleaginous nature which is relevant to its non-pathogenic and MEL-overproducing characteristics. The analysis and dataset contribute to stimulate the development of improved strains with customized properties for high yield production of functional bio-based materials.

References

[1]  Boekhout T (1995) Pseudozyma Bandoni emend. Boekhout, a genus for yeast-like anamorphs of Ustilaginales. J Gen Appl Microbiol 41: 359–366. doi: 10.2323/jgam.41.359
[2]  Boekhout T, Fell JW (1998) Pseudozyma Bandoni emend. Boekhout and a comparison with the yeast state of Ustilago maydis (de Candolle) Corda. In: Kurtzman CP, Fell JWThe yeasts: a taxonomic study 4th ed. Amsterdam: Elsevier Science Publishers; 790–797.
[3]  Wang QM, Jia JH, Bai FY (2006) Pseudozyma hubeiensis sp. nov. and Pseudozyma shanxiensis sp. nov., novel ustilaginomycetous anamorphic yeast species from plant leaves. Int. J Syst Evol Microbiol 56: 289–293. doi: 10.1099/ijs.0.63827-0
[4]  Golubev W, Sugita T, Golubev N (2007) An ustilaginomycetous yeast, Pseudozyma graminicola sp. nov., isolated from the leaves of pasture plants. Mycoscience 48: 29–33. doi: 10.1007/s10267-006-0324-6
[5]  Seo HS, Um HJ, Min J, Rhee SK, Cho TJ, et al. (2007) Pseudozyma jejuensis sp. nov., a novel cutinolytic ustilaginomycetous yeast species that is able to degrade plastic waste. FEMS Yeast Res 7: 1035–1045. doi: 10.1111/j.1567-1364.2007.00251.x
[6]  Morita T, Ogura Y, Takashima M, Hirose N, Fukuoka T, et al. (2011) Isolation of Pseudozyma churashimaensis sp. nov., a novel ustilaginomycetous yeast species as a producer of glycolipid biosurfactants, mannosylerythritol lipids. J Biosci Bioeng 112: 137–144. doi: 10.1016/j.jbiosc.2011.04.008
[7]  K?se ?, Tüter M, Ay?e Aksoy H (2002) Immobilized Candida antarctica lipase-catalyzed alcoholysis of cotton seed oil in a solvent-free medium. Bioresour Technol 83: 125–129. doi: 10.1016/s0960-8524(01)00203-6
[8]  Schmid RD, Verger R (1998) Lipases: interfacial enzymes with attractive applications. Angew Chem Int Ed 37: 1608–1633. doi: 10.1002/(sici)1521-3773(19980703)37:12<1608::aid-anie1608>3.3.co;2-m
[9]  Blank K, Morfill J, Gumpp H, Gaub HE (2006) Functional expression of Candida antarctica lipase B in Eschericha coli. J Biotechnol 125: 474–483. doi: 10.1016/j.jbiotec.2006.04.004
[10]  Kitamoto HK, Shinozaki Y, Cao XH, Morita T, Konishi M, et al. (2011) Phyllosphere yeasts rapidly break down biodegradable plastics. AMB Express 1: 44. doi: 10.1186/2191-0855-1-44
[11]  Kitamoto D, Haneishi K, Nakahara T, Tabuchi T (1990) Production of mannosylerythritol lipids by Candida antarctica from vegetable oils. Agric Biol Chem 54: 37–40. doi: 10.1271/bbb1961.54.37
[12]  Kitamoto D, Isoda H, Nakahara T (2002) Functional and potential applications of glycolipid biosurfactants. J Biosci Bioeng 94: 187–201. doi: 10.1263/jbb.94.187
[13]  Kitamoto D, Morita T, Fukuoka T, Konishi M, Imura T (2009) Self-assembling properties of glycolipid biosurfactants and their potential applications. Curr Opin Colloid Interface Sci 14: 315–328. doi: 10.1016/j.cocis.2009.05.009
[14]  Morita T, Fukuoka T, Imura T, Kitamoto D (2013) Production of mannosylerythritol lipids and their application in cosmetics. Appl Microbiol Biotechnol 97: 4691–4700. doi: 10.1007/s00253-013-4858-1
[15]  Imura T, Hikosaka Y, Worakitkanchanakul W, Sakai H, Abe M, et al. (2007) Aqueous-phase behavior of natural glycolipid biosurfactant mannosylerythritol lipid A: sponge, cubic, and lamellar phases. Langmuir 23: 1659–1663. doi: 10.1021/la0620814
[16]  Ito S, Imura T, Fukuoka T, Morita T, Sakai H, et al. (2007) Kinetic studies on the interactions between glycolipid biosurfactant assembled monolayers and various classes of immunoglobulins using surface plasmon resonance. Colloids Surf B Biointerfaces 58: 165–171. doi: 10.1016/j.colsurfb.2007.03.003
[17]  Morita T, Fukuoka T, Imura T, Kitamoto D (2009) Production of glycolipid biosurfactants by basidiomycetous yeasts. Biotechnol Appl Biochem 53: 39–49. doi: 10.1042/ba20090033
[18]  Hewald S, Josephs K, B?lker M (2005) Genetic analysis of biosurfactant production in Ustilago maydis. Appl Environ Microbiol 71: 3033–3040. doi: 10.1128/aem.71.6.3033-3040.2005
[19]  Hewald S, Linne U, Scherer M, Marahiel MA, K?mper J, et al. (2006) Identification of a gene cluster for biosynthesis of mannosylerythritol lipids in the basidiomycetous fungus Ustilago maydis. Appl Environ Microbiol 72: 5469–5477. doi: 10.1128/aem.00506-06
[20]  Spoeckner S, Wray V, Nimtz M, Lang S (1999) Glycolipids of the smut fungus Ustilago maydis from cultivation on renewable resources. Appl Microbiol Biotechnol 51: 33–39. doi: 10.1007/s002530051359
[21]  Boothroyd B, Thorn JA, Haskins RH (1956) Biochemistry of the ustilaginales. XII. Characterization of extracellular glycolipids produced by Ustilago sp. Can J Biochem Physiol 34: 10–14. doi: 10.1139/o56-003
[22]  Fluharty AL, O’Brien JS (1969) A mannose- and erythritol-containing glycolipid from Ustilago maydis. Biochemistry 8: 2627–2632. doi: 10.1021/bi00834a056
[23]  Kitamoto D, Ikegami T, Suzuki T, Sasaki A, Takeyama Y, et al. (2001) Microbial conversion of n-alkanes into glycolipid biosurfactants, mannosylerythritol lipids, by Pseudozyma (Candida antarctica). Biotechnol Lett 23: 1709–1714.
[24]  Morita T, Konishi M, Fukuoka T, Imura T, Kitamoto D (2006) Discovery of Pseudozyma rugulosa NBRC 10877 as a novel producer of the glycolipid biosurfactants, mannosylerythritol lipids, based on rDNA sequence. Appl Microbiol Biotechnol 73: 305–313. doi: 10.1007/s00253-006-0466-7
[25]  Rau U, Nguyen LA, Roeper H, Koch H, Lang S (2005) Fed-batch bioreactor production of mannosylerythritol lipids secreted by Pseudozyma aphidis. Appl Microbiol Biotechnol 68: 607–613. doi: 10.1007/s00253-005-1906-5
[26]  Konishi M, Nagahama T, Fukuoka T, Morita T, Imura T, et al. (2011) Yeast extract stimulates production of glycolipid biosurfactants, mannosylerythritol lipids, by Pseudozyma hubeiensis SY62. J Biosci Bioeng 111: 702–705. doi: 10.1016/j.jbiosc.2011.02.004
[27]  Kitamoto D, Yanagishita H, Haraya K, Kitamoto H (1998) Contribution of a chain-shortening pathway to the biosynthesis of the fatty acids of mannosylerythritol lipid (biosurfactant) in the yeast Candida antarctica: Effect of β-oxidation inhibitors on biosurfactant synthesis. Biotechnol Lett 20: 813–818.
[28]  Morita T, Konishi M, Fukuoka T, Imura T, Kitamoto HK, et al. (2007) Characterization of the genus Pseudozyma by the formation of glycolipid biosurfactants, mannosylerythritol lipids. FEMS Yeast Res 7: 286–292. doi: 10.1111/j.1567-1364.2006.00154.x
[29]  Fukuoka T, Morita T, Konishi M, Imura T, Sakai H, et al. (2007) Structural characterization and surface-active properties of a new glycolipid biosurfactant, mono-acylated mannosylerythritol lipid, produced from glucose by Pseudozyma antarctica. Appl Microbiol Biotechnol 76: 801–810. doi: 10.1007/s00253-007-1051-4
[30]  Fukuoka T, Morita T, Konishi M, Imura T, Kitamoto D (2007) Characterization of new glycolipid biosurfactants, tri-acylated mannosylerythritol lipids, produced by Pseudozyma yeasts. Biotechnol Lett 29: 1111–1118. doi: 10.1007/s10529-007-9363-0
[31]  Morita T, Koike H, Koyama Y, Hagiwara H, Ito E, et al. (2013) Genome sequence of the basidiomycetous yeast Pseudozyma antarctica T-34, a producer of the glycolipid biosurfactants mannosylerythritol lipids. Genome Announc 1: e0006413 doi:10.1128/genomeA.00064-13.
[32]  Kanehisa M, Goto S, Hattori M, Aoki-Kinoshita KF, Itoh M, et al.. (2006) From genomics to chemical genomics: new developments in KEGG. Nucleic Acids Res 34(Database issue): D354–357.
[33]  Koonin EV, Fedorova ND, Jackson JD, Jacobs AR, Krylov DM, et al. (2004) A comprehensive evolutionary classification of proteins encoded in complete eukaryotic genomes. Genome Biol 5: R7.
[34]  Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J, et al. (2009) BLAST+: architecture and applications. BMC Bioinformatics 10: 421 doi:10.1186/1471-2105-10-421.
[35]  Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, et al. (2000) Gene ontology: tool for the unification of biology. Nat Genet 25: 25–29. doi: 10.1038/75556
[36]  Kurtz S, Phillippy A, Delcher AL, Smoot M, Shumway M, et al. (2004) Versatile and open software for comparing large genomes. Genome Biology 5: R12. doi: 10.1186/gb-2004-5-2-r12
[37]  Vorapreeda T, Thammarongtham C, Cheevadhanarak S, Laoteng K (2012) Alternative routes of acetyl-CoA synthesis identified by comparative genomic analysis: involvement in the lipid production of oleaginous yeast and fungi. Microbiology 158: 217–228. doi: 10.1099/mic.0.051946-0
[38]  Tamano K, Bruno KS, Karagiosis SA, Culley DE, Deng S, et al. (2013) Increased production of fatty acids and triglycerides in Aspergillus oryzae by enhancing expressions of fatty acid synthesis-related genes. Appl Microbiol Biotechnol. 97: 269–281. doi: 10.1007/s00253-012-4193-y
[39]  Grigoriev IV, Nordberg H, Shabalov I, Aerts A, Cantor M, et al. (2011) The Genome Portal of the Department of Energy Joint Genome Institute. Nucl Acids Res 40: D26–D32 doi:10.1093/nar/gkr947.
[40]  Katoh K, Asimenos G, Toh H (2009) Multiple Alignment of DNA Sequences with MAFFT. Methods Mol Biol 537: 39–64 doi:_10.1007/978-1-59745-251-9_3.
[41]  Punta M, Coggill PC, Eberhardt RY, Mistry J, Tate J, et al.. (2012) The Pfam protein families database. Nucleic Acids Res 40 (Database issue): D290–301. doi: 10.1093/nar/gkr1065.
[42]  Stamatakis A, Hoover P, Rougemont J (2008) A rapid bootstrap algorithm for the RAxML Web servers. Syst Biol 57: 758–771.
[43]  Tamano K, Sano M, Yamane N, Terabayashi Y, Toda T, et al. (2008) Transcriptional regulation of genes on the non-syntenic blocks of Aspergillus oryzae and its functional relationship to solid-state cultivation. Fungal Genet Biol 45: 139–151. doi: 10.1016/j.fgb.2007.09.005
[44]  R Development Core Team (2009) R: A Language and Environment for Statistical. Computing, R Foundation for Statistical Computing, Vienna, Austria.
[45]  Gentleman RC, Carey VJ, Bates DM, Bolstad B, Dettling M, et al. (2004) Bioconductor: open software development for computational biology and bioinformatics. Genome Biol 5: R80. doi: 10.1186/gb-2004-5-10-r80
[46]  Yang YH, Paquet AC (2005) Preprocessing two-color spotted arrays. In: Gentleman RC, Carey VJ, Huber W, Irizarry RA, Dudoit S (Eds.). 2005. Bioinformatics and Computational Biology Solutions using R and Bioconductor. Springer Science+Business Media Inc., New York, 49–90.
[47]  Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, et al. (2005) Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci USA 102: 15545–15550. doi: 10.1073/pnas.0506580102
[48]  Hynes MJ, Murray SL (2010) ATP-citrate lyase is required for production of cytosolic acetyl coenzyme A and development in Aspergillus nidulans. Eukaryot Cell 9: 1039–1048. doi: 10.1128/ec.00080-10
[49]  Fatland BL, Ke J, Anderson MD, Mentzen WI, Cui LW, et al. (2002) Molecular characterization of a heteromeric ATP-citrate lyase that generates cytosolic acetyl-coenzyme A in Arabidopsis. Plant Physiol. 130: 740–756. doi: 10.1104/pp.008110
[50]  K?mper J, Kahmann R, B?lker M, Ma LJ, Brefort T, et al. (2006) Insights from the genome of the biotrophic fungal plant pathogen Ustilago maydis. Nature 444: 97–101. doi: 10.1038/nature05248
[51]  Dean RA, Talbot NJ, Ebbole DJ, Farman ML, Mitchell TK, et al. (2005) The genome sequence of the rice blast fungus Magnaporthe grisea. Nature 434: 980–986. doi: 10.1038/nature03449
[52]  Mendgen K, Hahn M (2002) Plant infection and the establishment of fungal biotrophy. Trends Plant Sci 7: 352–356. doi: 10.1016/s1360-1385(02)02297-5
[53]  Dean RA (2007) Fungal gene clusters. Nat Biotechnol 25: 67. doi: 10.1038/nbt0107-67
[54]  Morita T, Konishi M, Fukuoka T, Imura T, Kitamoto D (2006) Analysis of expressed sequence tags from the anamorphic basidiomycetous yeast, Pseudozyma antarctica, which produces glycolipid biosurfactants, mannosylerythritol lipids. Yeast 23: 661–671. doi: 10.1016/j.carres.2008.08.034
[55]  Teichmann B, Linne U, Hewald S, Marahiel MA, B?lker M (2007) A biosynthetic gene cluster for a secreted cellobiose lipid with antifungal activity from Ustilago maydis. Mol Microbiol 66: 525–533. doi: 10.1111/j.1365-2958.2007.05941.x
[56]  Schirawski J, Mannhaupt G, Münch K, Brefort T, Schipper K, et al. (2010) Pathogenicity determinants in smut fungi revealed by genome comparison. Science 330: 1546–1548. doi: 10.1126/science.1195330
[57]  Konishi M, Morita T, Fukuoka T, Imura T, Kakugawa K, et al. (2007) Production of different types of mannosylerythritol lipids as biosurfactants by the newly isolated yeast strains belonging to the genus Pseudozyma. Appl Microbiol Biotechnol 75: 521–531. doi: 10.1007/s00253-007-0853-8
[58]  Koitabashi M, Noguchi MT, Sameshima-Yamashita Y, Hiradate S, Suzuki K, et al. (2012) Degradation of biodegradable plastic mulch films in soil environment by phylloplane fungi isolated from gramineous plants. AMB Express 2: 40 doi:10.1186/2191-0855-2-40.
[59]  Morita T, Ito E, Kitamoto HK, Takegawa K, Fukuoka T, et al. (2010) Identification of the gene PaEMT1 for biosynthesis of mannosylerythritol lipids in the basidiomycetous yeast Pseudozyma antarctica. Yeast 27: 905–917.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133