全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2014 

The Core Proteome and Pan Proteome of Salmonella Paratyphi A Epidemic Strains

DOI: 10.1371/journal.pone.0089197

Full-Text   Cite this paper   Add to My Lib

Abstract:

Comparative proteomics of the multiple strains within the same species can reveal the genetic variation and relationships among strains without the need to assess the genomic data. Similar to comparative genomics, core proteome and pan proteome can also be obtained within multiple strains under the same culture conditions. In this study we present the core proteome and pan proteome of four epidemic Salmonella Paratyphi A strains cultured under laboratory culture conditions. The proteomic information was obtained using a Two-dimensional gel electrophoresis (2-DE) technique. The expression profiles of these strains were conservative, similar to the monomorphic genome of S. Paratyphi A. Few strain-specific proteins were found in these strains. Interestingly, non-core proteins were found in similar categories as core proteins. However, significant fluctuations in the abundance of some core proteins were also observed, suggesting that there is elaborate regulation of core proteins in the different strains even when they are cultured in the same environment. Therefore, core proteome and pan proteome analysis of the multiple strains can demonstrate the core pathways of metabolism of the species under specific culture conditions, and further the specific responses and adaptations of the strains to the growth environment.

References

[1]  Crump JA, Luby SP, Mintz ED (2004) The global burden of typhoid fever. Bull World Health Organ 82: 346–353.
[2]  Crump JA, Mintz ED (2010) Global trends in typhoid and paratyphoid Fever. Clin Infect Dis 50: 241–246. doi: 10.1086/649541
[3]  Ochiai RL, Wang X, von Seidlein L, Yang J, Bhutta ZA, et al. (2005) Salmonella paratyphi A rates, Asia. Emerg Infect Dis 11: 1764–1766. doi: 10.3201/eid1111.050168
[4]  Dong BQ, Yang J, Wang XY, Gong J, von Seidlein L, et al. (2010) Trends and disease burden of enteric fever in Guangxi province, China, 1994–2004. Bull World Health Organ 88: 689–696. doi: 10.2471/blt.09.069310
[5]  Yan M, Liang W, Li W, Kan B (2005) Epidemics of Typhoid and Paratyphoid Fever From 1995 Through 2004 in China. DISEASE SURVEILLANCE 20: 401–403.
[6]  Sood S, Kapil A, Dash N, Das BK, Goel V, et al. (1999) Paratyphoid fever in India: An emerging problem. Emerg Infect Dis 5: 483–484. doi: 10.3201/eid0503.990329
[7]  Liang W, Zhao Y, Chen C, Cui X, Yu J, et al. (2012) Pan-genomic analysis provides insights into the genomic variation and evolution of Salmonella Paratyphi A. PLoS One. 7: e45346. doi: 10.1371/journal.pone.0045346
[8]  Parkhill J, Dougan G, James KD, Thomson NR, Pickard D, et al. (2001) Complete genome sequence of a multiple drug resistant Salmonella enterica serovar Typhi CT18. Nature 413: 848–852.
[9]  Deng W, Liou SR, Plunkett G 3rd, Mayhew GF, Rose DJ, et al. (2003) Comparative genomics of Salmonella enterica serovar Typhi strains Ty2 and CT18. J Bacteriol 185: 2330–2337. doi: 10.1128/jb.185.7.2330-2337.2003
[10]  McClelland M, Sanderson KE, Clifton SW, Latreille P, Porwollik S, et al. (2004) Comparison of genome degradation in Paratyphi A and Typhi, human-restricted serovars of Salmonella enterica that cause typhoid. Nat Genet 36: 1268–1274. doi: 10.1038/ng1470
[11]  Kidgell C, Reichard U, Wain J, Linz B, Torpdahl M, et al. (2002) Salmonella typhi, the causative agent of typhoid fever, is approximately 50,000 years old. Infect Genet Evol 2: 39–45. doi: 10.1016/s1567-1348(02)00089-8
[12]  Chen C, Zhao Y, Han H, Pang B, Zhang J, et al. (2012) Optimization of pulsed-field gel electrophoresis protocols for Salmonella Paratyphi A subtyping. Foodborne Pathog Dis 9: 325–330. doi: 10.1089/fpd.2011.1023
[13]  Holt KE, Parkhill J, Mazzoni CJ, Roumagnac P, Weill FX, et al. (2008) High-throughput sequencing provides insights into genome variation and evolution in Salmonella Typhi. Nat Genet 40: 987–993. doi: 10.1038/ng.195
[14]  Baker S, Holt K, van de Vosse E, Roumagnac P, Whitehead S, et al. (2008) High-throughput genotyping of Salmonella enterica serovar Typhi allowing geographical assignment of haplotypes and pathotypes within an urban District of Jakarta, Indonesia. J Clin Microbiol 46: 1741–1746. doi: 10.1128/jcm.02249-07
[15]  Holt KE, Baker S, Dongol S, Basnyat B, Adhikari N, et al. (2010) High-throughput bacterial SNP typing identifies distinct clusters of Salmonella Typhi causing typhoid in Nepalese children. BMC Infect Dis 10: 144. doi: 10.1186/1471-2334-10-144
[16]  Holt KE, Dolecek C, Chau TT, Duy PT, La TT, et al. (2011) Temporal fluctuation of multidrug resistant salmonella typhi haplotypes in the mekong river delta region of Vietnam. PLoS Negl Trop Dis 5: e929. doi: 10.1371/journal.pntd.0000929
[17]  Baker S, Holt KE, Clements AC, Karkey A, Arjyal A, et al. (2011) Combined high-resolution genotyping and geospatial analysis reveals modes of endemic urban typhoid fever transmission. Open Biol 1: 110008. doi: 10.1098/rsob.110008
[18]  Jacobsen A, Hendriksen RS, Aaresturp FM, Ussery DW, Friis C (2011) The Salmonella enterica pan-genome. Microb Ecol 62: 487–504. doi: 10.1007/s00248-011-9880-1
[19]  Pandey A, Mann M (2000) Proteomics to study genes and genomes. Nature 405: 837–846. doi: 10.1038/35015709
[20]  Naaby-Hansen S, Waterfield MD, Cramer R (2001) Proteomics–post-genomic cartography to understand gene function. Trends Pharmacol Sci 22: 376–384. doi: 10.1016/s0165-6147(00)01663-1
[21]  Encheva V, Wait R, Begum S, Gharbia SE, Shah HN (2007) Protein expression diversity amongst serovars of Salmonella enterica. Microbiology 153: 4183–4193. doi: 10.1099/mic.0.2007/010140-0
[22]  Steel LF, Haab BB, Hanash SM (2005) Methods of comparative proteomic profiling for disease diagnostics. J Chromatogr B Analyt Technol Biomed Life Sci 815: 275–284. doi: 10.1016/j.jchromb.2004.10.072
[23]  Ribot EM, Fair MA, Gautom R, Cameron DN, Hunter SB, et al. (2006) Standardization of pulsed-field gel electrophoresis protocols for the subtyping of Escherichia coli O157:H7, Salmonella, and Shigella for PulseNet. Foodborne Pathog Dis 3: 59–67. doi: 10.1089/fpd.2006.3.59
[24]  Yuan J, Zhu L, Liu X, Li T, Zhang Y, et al. (2006) A proteome reference map and proteomic analysis of Bifidobacterium longum NCC2705. Mol Cell Proteomics 5: 1105–1118. doi: 10.1074/mcp.m500410-mcp200
[25]  Ying T, Wang H, Li M, Wang J, Shi Z, et al. (2005) Immunoproteomics of outer membrane proteins and extracellular proteins of Shigella flexneri 2a 2457T. Proteomics 5: 4777–4793. doi: 10.1002/pmic.200401326
[26]  Zhang MJ, Zhao F, Xiao D, Gu YX, Meng FL, et al. (2009) Comparative proteomic analysis of passaged Helicobacter pylori. J Basic Microbiol 49: 482–490. doi: 10.1002/jobm.200800372
[27]  Confer AW, Ayalew S (2013) The OmpA family of proteins: roles in bacterial pathogenesis and immunity. Vet Microbiol 163: 207–222. doi: 10.1016/j.vetmic.2012.08.019
[28]  Jap BK, Walian PJ (1990) Biophysics of the structure and function of porins. Q Rev Biophys 23: 367–403. doi: 10.1017/s003358350000559x
[29]  Singh SP, Williams YU, Miller S, Nikaido H (2003) The C-terminal domain of Salmonella enterica serovar typhimurium OmpA is an immunodominant antigen in mice but appears to be only partially exposed on the bacterial cell surface. Infect Immun 71: 3937–3946. doi: 10.1128/iai.71.7.3937-3946.2003
[30]  Sugawara E, Nikaido H (1992) Pore-forming activity of OmpA protein of Escherichia coli. J Biol Chem 267: 2507–2511.
[31]  Sugawara E, Nikaido H (1994) OmpA protein of Escherichia coli outer membrane occurs in open and closed channel forms. J Biol Chem 269: 17981–17987.
[32]  O’Neal CR, Gabriel WM, Turk AK, Libby SJ, Fang FC, et al. (1994) RpoS is necessary for both the positive and negative regulation of starvation survival genes during phosphate, carbon, and nitrogen starvation in Salmonella typhimurium. J Bacteriol 176: 4610–4616.
[33]  Talukder AA, Yanai S, Nitta T, Kato A, Yamada M (1996) RpoS-dependent regulation of genes expressed at late stationary phase in Escherichia coli. FEBS Lett 386: 177–180. doi: 10.1016/0014-5793(96)00426-7
[34]  Sevcik M, Sebkova A, Volf J, Rychlik I (2001) Transcription of arcA and rpoS during growth of Salmonella typhimurium under aerobic and microaerobic conditions. Microbiology 147: 701–708.
[35]  Ibanez-Ruiz M, Robbe-Saule V, Hermant D, Labrude S, Norel F (2000) Identification of RpoS (sigma(S))-regulated genes in Salmonella enterica serovar typhimurium. J Bacteriol 182: 5749–5756. doi: 10.1128/jb.182.20.5749-5756.2000
[36]  Khan AQ, Zhao L, Hirose K, Miyake M, Li T, et al. (1998) Salmonella typhi rpoS mutant is less cytotoxic than the parent strain but survives inside resting THP-1 macrophages. FEMS Microbiol Lett 161: 201–208. doi: 10.1016/s0378-1097(98)00075-5
[37]  Iida A, Harayama S, Iino T, Hazelbauer GL (1984) Molecular cloning and characterization of genes required for ribose transport and utilization in Escherichia coli K-12. J Bacteriol 158: 674–682.
[38]  Abou-Sabe M, Pilla J, Hazuda D, Ninfa A (1982) Evolution of the D-ribose operon on Escherichia coli B/r. J Bacteriol 150: 762–769.
[39]  Meysman P, Sanchez-Rodriguez A, Fu Q, Marchal K, Engelen K (2013) Expression divergence between Escherichia coli and Salmonella enterica serovar Typhimurium reflects their lifestyles. Mol Biol Evol 30: 1302–1314. doi: 10.1093/molbev/mst029
[40]  Leekitcharoenphon P, Lukjancenko O, Friis C, Aarestrup FM, Ussery DW (2012) Genomic variation in Salmonella enterica core genes for epidemiological typing. BMC Genomics 13: 88. doi: 10.1186/1471-2164-13-88

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133