全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2014 

CLAVATA3 Dodecapeptide Modified CdTe Nanoparticles: A Biocompatible Quantum Dot Probe for In Vivo Labeling of Plant Stem Cells

DOI: 10.1371/journal.pone.0089241

Full-Text   Cite this paper   Add to My Lib

Abstract:

CLAVATA3 (CLV3) dodecapeptides function in plant stem cell maintenance, but CLV3 function in cell-cell communication remains less clear. Here, we coupled CLV3 dodecapeptides to synthesized CdTe nanoparticles to track their bioactivity on stem cells in the root apical meristem. To achieve this, we first synthesized CdTe quantum dots (QDs) using a one-pot method, and then evaluated the cytotoxicity of the QDs in BY-2 cells. The results showed that QDs in plant cells must be used at low concentrations and for short treatment time. To make biocompatible probes to track stem cell fate, we conjugated CLV3 dodecapeptides to the QDs by the zero-coupling method; this modification greatly reduced the cytotoxicity of the QDs. Furthermore, we detected CLV3-QDs localized on the cell membrane, consistent with the known localization of CLV3. Our results indicate that using surface-modified QDs at low concentrations and for short time treatment can improve their utility for plant cell imaging.

References

[1]  Aichinger E, Kornet N, Friedrich T, Laux T (2012) Plant stem cell niches. Annu Rev Plant Biol 63: 615–636. doi: 10.1146/annurev-arplant-042811-105555
[2]  Katsir L, Davies KA, Bergmann DC, Laux T (2011) Peptide signaling in plant development. Curr Biol 21: R356–R364. doi: 10.1016/j.cub.2011.03.012
[3]  Murphy E, Smith S, De Smet I (2012) Small signaling peptides in Arabidopsis development: how cells communicate over a short distance. Plant Cell 24(8): 3198–3217. doi: 10.1105/tpc.112.099010
[4]  Yadav RK, Perales M, Gruel J, Ohno C, Heisler M, et al. (2013) Plant stem cell maintenance involves direct transcriptional repression of differentiation program. Mol Syst Biol 9: 654. doi: 10.1038/msb.2013.8
[5]  Butenko MA, Vie AK, Brembu T, Aalen RB, Bones AM (2009) Plant peptides in signalling: looking for new partners. Trends Plant Sci 14: 255–263. doi: 10.1016/j.tplants.2009.02.002
[6]  Lu S, Xu X, Zhao W, Wu W, Yuan H, et al. (2010) Targeting of Embryonic Stem Cells by Peptide-Conjugated Quantum Dots. PLoS ONE 5(8): e12075 doi:10.1371/journal.pone.0012075.
[7]  Arnspang Christensen E, Kulatunga P, Lagerholm BC (2012) A Single Molecule Investigation of the Photostability of Quantum Dots. PLoS ONE 7(8): e44355 doi:10.1371/journal.pone.0044355.
[8]  Biju V, Tamitake Itoh T, Ishikawa M (2010) Delivering quantum dots to cells: bioconjugated quantum dots for targeted and nonspecific extracellular and intracellular imaging. Chem Soc Rev 39: 3031–3056. doi: 10.1039/b926512k
[9]  Liu W, Howarth M, Greytak AB, Zheng Y, Nocera DG, et al. (2008) Compact biocompatible quantum dots functionalized for cellular imaging. J Am Chem Soc 130: 1274–1284. doi: 10.1021/ja076069p
[10]  Howarth M, Liu W, Puthenveetil S, Zheng Y, Marshall LF, et al. (2008) Monovalent, reduced-size quantum dots for imaging receptors on living cells. Nat Methods 5: 397–399. doi: 10.1038/nmeth.1206
[11]  Groc L, Lafourcade M, Heine M, Renner M, Racine V, et al. (2007) Surface trafficking of neurotransmitter receptor: comparison between single-molecule/quantum dot strategies. J Neurosci 27: 12433–12437. doi: 10.1523/jneurosci.3349-07.2007
[12]  Nechyporuk-Zloy V, Dieterich P, Oberleithner H, Stock C, Schwab A (2008) Dynamics of single potassium channel proteins in the plasma membrane of migrating cells. Am J Physiol Cell Physiol 294: C1096–C1102. doi: 10.1152/ajpcell.00252.2007
[13]  Zhang C, Ji X, Zhang Y, Zhou G, Ke X, et al. (2013) One-pot synthesized aptamer-functionalized CdTe: Zn2+ quantum dots for tumor-targeted fluorescence imaging in vitro and in vivo. Anal Chem 85: 5843–5849. doi: 10.1021/ac400606e
[14]  Zhang MZ, Yu RN, Chen J, Ma ZY, Zhao YD (2012) Targeted quantum dots fluorescence probes functionalized with aptamer and peptide for transferrin receptor on tumor cells. Nanotechnol 23: 485104 doi:10.1088/0957-4484/23/48/485104.
[15]  Bar-Ilan O, Albrecht RM, Fako VE, Furgeson DY (2009) Toxicity assessments of multisized gold and silver nanoparticles in zebrafish embryos. Small 5: 1897–1910. doi: 10.1002/smll.200801716
[16]  Hsieh SC, Wang FF, Lin CS, Chen YJ, Hung SC, et al. (2006) The inhibition of osteogenesis with human bone marrow mesenchymal stem cells by CdSe/ZnS quantum dot labels. Biomaterials 27: 1656–1664. doi: 10.1016/j.biomaterials.2005.09.004
[17]  Zhang H, Zhou Z, Yang B, Gao MY (2003) The Influence of carboxyl groups on the photoluminescence of mercaptocarboxylic acid-stabilized CdTe nanoparticles. J Phys Chem B 107: 8–13. doi: 10.1021/jp025910c
[18]  Yu WW, Qu LH, Guo WZ, Peng XG (2003) Experimental determination of the extinction coefficient of CdTe, CdSe, and CdS nanocrystals. Chem Mater 15: 2854–2860. doi: 10.1021/cm034081k
[19]  Ma ZW, Yu GH (2010) Phosphorylation of mitogen-activated protein kinase (MAPK) is required for cytokinesis and progression of cell cycle in tobacco BY-2 cells. J Plant Physiol 167: 216–221. doi: 10.1016/j.jplph.2009.08.008
[20]  Lovri? J, Cho SJ, Winnik FM, Maysinger D (2005) Unmodified cadmium telluride quantum dots induce reactive oxygen species formation leading to multiple organelle damage and cell death. Chem Biol 12: 1227–1234. doi: 10.1016/j.chembiol.2005.09.008
[21]  van der Weerden NL, Lay FT, Anderson MA (2008) The plant defensin, NaD1, enters the cytoplasm of Fusarium oxysporum hyphae. J Biol Chem 283: 14445–14452. doi: 10.1074/jbc.m709867200
[22]  Potocky M, Jones MA, Bezvoda R, Smirnoff N, ?ársky V (2007) Reactive oxygen species produced by NADPH oxidase are involved in pollen tube growth. New Phytol 174: 742–751. doi: 10.1111/j.1469-8137.2007.02042.x
[23]  Banu NA, Hoque A, Watanabe-Sugimoto M, Matsuoka K, Nakamura Y, et al. (2009) Proline and glycinebetaine induce antioxidant defense gene expression and suppress cell death in cultured tobacco cells under salt stress. J Plant Physiol 166: 146–156. doi: 10.1016/j.jplph.2008.03.002
[24]  Yu GH, Liang JG, He ZK, Sun MX (2006) Quantum dot-mediated detection of γ-aminobutyric acid binding sites on the surface of living pollen protoplasts in tobacco. Chem Biol 13: 723–731. doi: 10.1016/j.chembiol.2006.05.007
[25]  Hermanson GT (2008) Zero-length crosslinkers. In: Hermanson GT editor. Bioconjugate Techniques (2nd edition). Chapter 3. San Diego, CA: Academic Press.215–233.
[26]  Pinaud F, King D, Moore HP, Weiss S (2004) Bioactivation and cell targeting of semiconductor CdSe/ZnS nanocrystals with phytochelatin-related peptides. J Am Chem Soc 126: 6115–6123. doi: 10.1021/ja031691c
[27]  Mathur J, Koncz C, Szabados L (1995) A simple method for isolation, liquid culture, transformation and regeneration of Arabidopsis thaliana protoplasts. Plant Cell Rep 14: 221–226. doi: 10.1007/bf00233637
[28]  Clarke S, Pinaud F, Beutel O, You CJ, Piehler J, et al. (2010) Covalent monofunctionalization of peptide-coated quantum dots for single-molecule assays. Nano Lett 10: 2147–2154. doi: 10.1021/nl100825n
[29]  Chen FQ, Gerion D (2004) Fluorescent CdSe/ZnS nanocrystal-peptide conjugates for long-term, nontoxic imaging and nuclear targeting in living cells. Nano Lett 4: 1827–1832. doi: 10.1021/nl049170q
[30]  Vu TQ, Maddipati R, Blute TA, Nehilla BJ, Nusblat L, et al. (2005) Peptide-conjugated quantum dots activate neuronal receptors and initiate downstream signaling of neurite growth. Nano Lett 5: 603–607. doi: 10.1021/nl047977c
[31]  Ogawa M, Shinohara H, Sakagami Y, Matsubayashi Y (2008) Arabidopsis CLV3 peptide directly binds CLV1 ectodomain. Science 319: 294. doi: 10.1126/science.1150083
[32]  Chan WC, Nie S (1998) Quantum dot bioconjugates for ultrasensitive nonisotopic detection. Science 281: 2016–2018. doi: 10.1126/science.281.5385.2016
[33]  Bruchez PM, Moronne M, Gin P, Weiss S, Alivisatos AP (1998) Semiconductor nanocrystals as fluorescent biological labels. Science 281: 2013–2016. doi: 10.1126/science.281.5385.2013
[34]  Gaoponik N, Talapin DV, Rogach AL, Hoppe K, Shevchenko EV, et al. (2002) Thiol-capping of CdTe nanocrystals: an alternative to organometallic synthetic routes. J Phys Chem B 106: 7177–7185. doi: 10.1021/jp025541k
[35]  Rakovich YP, Volkov Y, Sapra S, Susha AS, Dblinger M, et al. (2007) CdTe nanowire networks: fast self-assembly in solution, internal structure, and optical properties. J Phys Chem C 111: 18927–18931. doi: 10.1021/jp076622p
[36]  DalCorso G, Farinati S, Maistri S, Furini A (2008) How Plants Cope with Cadmium: Staking All on Metabolism and Gene Expression. J. Integr Plant Biol 50: 1268–1280. doi: 10.1111/j.1744-7909.2008.00737.x
[37]  Cho SJ, Maysinger D, Jain M, R?der B, Hackbarth S, et al. (2007) Long-term exposure to CdTe quantum dots causes functional impairments in live cells. Langmuir 23: 1974–1980. doi: 10.1021/la060093j
[38]  Hauck TS, Anderson RE, Fischer HC, Newbigging S, Chan WC (2010) In vivo quantum-dot toxicity assessment. Small 6: 138–144. doi: 10.1002/smll.200900626
[39]  Hao YZ, Yang XY, Shi YZ, Song S, Xing J, et al. (2013) Magnetic gold nanoparticles as a vehicle for fluorescein isothiocyanate and DNA delivery into plant cells. Botany 92(7): 457–466. doi: 10.1139/cjb-2012-0281
[40]  Darvill D, Centeno A, Xie F (2013) Plasmonic fluorescence enhancement by metal nanostructures: shaping the future of bionanotechnology. Phys Chem Chem Phys 15: 15709–15726. doi: 10.1039/c3cp50415h
[41]  Iranfar H, Rajabi O, Salari R, Chamani J (2012) Probing the interaction of human serum albumin with ciprofloxacin in the presence of silver nanoparticles of three sizes: multispectroscopic and ζ potential investigation. J Phys Chem B 116(6): 1951–1964. doi: 10.1021/jp210685q
[42]  Kannan P, Rahim FA, Chen R, Teng X, Huang L, et al. (2013) Au nanorod decoration on NaYF4:Yb/Tm nanoparticles for enhanced emission and wavelength-dependent biomolecular sensing. ACS Appl Mater Interfaces 5: 3508–3513. doi: 10.1021/am4007758
[43]  Li DY, He XW, Chen Y, Li WY, Zhang YK (2013) Novel Hybrid Structure Silica/CdTe/Molecularly Imprinted Polymer: Synthesis, Specific Recognition, and Quantitative Fluorescence Detection of Bovine Hemoglobin. ACS Appl Mater Interfaces 5: 12609–12616. doi: 10.1021/am403942y
[44]  Song J, Dai Z, Guo W, Li Y, Wang W, et al. (2013) Preparation of CdTe/CdS/SiO2 core/multishell structured composite nanoparticles. J Nanosci Nanotechnol 13: 6924–6927. doi: 10.1166/jnn.2013.8064
[45]  Xu SF, Lu HZ, Li JH, Song XL, Wang AX, et al. (2013) Dummy molecularly imprinted polymers-capped CdTe quantum dots for the fluorescent sensing of 2,4,6-Trinitrotoluene. ACS Appl Mater Interfaces 5: 8146–8154. doi: 10.1021/am4022076
[46]  Bleckmann A, Weidtkamp-Peters S, Seidel CA, Simon R (2010) Stem cell signaling in Arabidopsis requires CRN to localize CLV2 to the plasma membrane. Plant Physiol 152(1): 166–176. doi: 10.1104/pp.109.149930
[47]  Gagne JM, Clark SE (2010) The Arabidopsis stem cell factor POLTERGEIST is membrane localized and phospholipid stimulated. Plant Cell 22(3): 729–743. doi: 10.1105/tpc.109.068734

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133