In the prospect of engineering cyanobacteria for the biological photoproduction of hydrogen, we have studied the hydrogen production machine in the model unicellular strain Synechocystis PCC6803 through gene deletion, and overexpression (constitutive or controlled by the growth temperature). We demonstrate that the hydrogenase-encoding hoxEFUYH operon is dispensable to standard photoautotrophic growth in absence of stress, and it operates in cell defense against oxidative (H2O2) and sugar (glucose and glycerol) stresses. Furthermore, we showed that the simultaneous over-production of the proteins HoxEFUYH and HypABCDE (assembly of hydrogenase), combined to an increase in nickel availability, led to an approximately 20-fold increase in the level of active hydrogenase. These novel results and mutants have major implications for those interested in hydrogenase, hydrogen production and redox metabolism, and their connections with environmental conditions.
Eckert C, Boehm M, Carrieri D, Yu J, Dubini A, et al. (2012) Genetic analysis of the Hox hydrogenase in the cyanobacterium Synechocystis sp. PCC 6803 reveals subunit roles in association, assembly, maturation, and function. J Biol Chem 287: 43502–43515. doi: 10.1074/jbc.m112.392407
[3]
Grigorieva G, Shestakov S (1982) Transformation in the cyanobacterium Synechocystis sp 6803. FEMS Microbiol Lett 13: 367–370. doi: 10.1111/j.1574-6968.1982.tb08289.x
[4]
Ferino F, Chauvat F (1989) A promoter-probe vector-host system for the cyanobacterium, Synechocystis PCC6803. Gene 84: 257–266. doi: 10.1016/0378-1119(89)90499-x
[5]
Mermet-Bouvier P, Chauvat F (1994) A conditional expression vector for the cyanobacteria Synechocystis sp. strains PCC6803 and PCC6714 or Synechococcus sp. strains PCC7942 and PCC6301. Curr Microbiol 28: 145–148. doi: 10.1007/bf01571055
[6]
Poncelet M, Cassier-Chauvat C, Leschelle X, Bottin H, Chauvat F (1998) Targeted deletion and mutational analysis of the essential (2Fe-2S) plant-like ferredoxin in Synechocystis PCC6803 by plasmid shuffling. Mol Microbiol 28: 813–821. doi: 10.1046/j.1365-2958.1998.00844.x
[7]
Cournac L, Guedeney G, Peltier G, Vignais PM (2004) Sustained photoevolution of molecular hydrogen in a mutant of Synechocystis sp. strain PCC 6803 deficient in the type I NADPH-dehydrogenase complex. J Bacteriol 186: 1737–1746. doi: 10.1128/jb.186.6.1737-1746.2003
[8]
McIntosh CL, Germer F, Schulz R, Appel J, Jones AK (2011) The [NiFe]-Hydrogenase of the Cyanobacterium Synechocystis sp PCC 6803 Works Bidirectionally with a Bias to H-2 Production. Journal of the American Chemical Society 133: 11308–11319. doi: 10.1021/ja203376y
[9]
Carrieri D, Wawrousek K, Eckert C, Yu J, Maness PC (2011) The role of the bidirectional hydrogenase in cyanobacteria. Bioresour Technol 102: 8368–8377. doi: 10.1016/j.biortech.2011.03.103
[10]
Dutheil J, Saenkham P, Sakr S, Leplat C, Ortega-Ramos M, et al. (2012) The AbrB2 autorepressor, expressed from an atypical promoter, represses the hydrogenase operon to regulate hydrogen production in Synechocystis strain PCC6803. J Bacteriol 194: 5423–5433. doi: 10.1128/jb.00543-12
[11]
Gutekunst K, Phunpruch S, Schwarz C, Schuchardt S, Schulz-Friedrich R, et al. (2005) LexA regulates the bidirectional hydrogenase in the cyanobacterium Synechocystis sp. PCC 6803 as a transcription activator. Mol Microbiol 58: 810–823. doi: 10.1111/j.1365-2958.2005.04867.x
[12]
Oliveira P, Lindblad P (2005) LexA, a transcription regulator binding in the promoter region of the bidirectional hydrogenase in the cyanobacterium Synechocystis sp. PCC 6803. FEMS Microbiol Lett 251: 59–66. doi: 10.1016/j.femsle.2005.07.024
[13]
Germer F, Zebger I, Saggu M, Lendzian F, Schulz R, et al. (2009) Overexpression, isolation, and spectroscopic characterization of the bidirectional [NiFe] hydrogenase from Synechocystis sp. PCC 6803. J Biol Chem 284: 36462–36472. doi: 10.1074/jbc.m109.028795
[14]
Agervald A, Stensjo K, Holmqvist M, Lindblad P (2008) Transcription of the extended hyp-operon in Nostoc sp. strain PCC 7120. BMC Microbiol 8: 69. doi: 10.1186/1471-2180-8-69
[15]
Sakr S, Dutheil J, Saenkham P, Bottin H, Leplat C, et al. (2013) The activity of the Synechocystis PCC6803 AbrB2 regulator of hydrogen production can be post-translationally controlled through glutathionylation. International Journal of Hydrogen Energy 38: 13547–13555. doi: 10.1016/j.ijhydene.2013.07.124
[16]
Domain F, Houot L, Chauvat F, Cassier-Chauvat C (2004) Function and regulation of the cyanobacterial genes lexA, recA and ruvB: LexA is critical to the survival of cells facing inorganic carbon starvation. Mol Microbiol 53: 65–80. doi: 10.1111/j.1365-2958.2004.04100.x
[17]
Leplat C, Champeimont R, Saenkham P, Cassier-Chauvat C, Jean-Christophe A, et al. (2013) Genome-wide transcriptome analysis of hydrogen production in the cyanobacterium Synechocystis: Towards the identification of new players. International Journal of Hydrogen Energy 38: 1866–1872. doi: 10.1016/j.ijhydene.2012.11.118
[18]
Aubert-Jousset E, Cano M, Guedeney G, Richaud P, Cournac L (2011) Role of HoxE subunit in Synechocystis PCC6803 hydrogenase. FEBS J 278: 4035–4043. doi: 10.1111/j.1742-4658.2011.08308.x
[19]
Labarre J, Chauvat F, Thuriaux P (1989) Insertional mutagenesis by random cloning of antibiotic resistance genes into the genome of the cyanobacterium Synechocystis strain PCC 6803. J Bacteriol 171: 3449–3457.
[20]
Pinto F, van Elburg KA, Pacheco CC, Lopo M, Noirel J, et al. (2012) Construction of a chassis for hydrogen production: physiological and molecular characterization of a Synechocystis sp. PCC 6803 mutant lacking a functional bidirectional hydrogenase. Microbiology 158: 448–464. doi: 10.1099/mic.0.052282-0
[21]
Marteyn B, Sakr S, Farci S, Bedhomme M, Chardonnet S, et al. (2013) The Synechocystis PCC6803 MerA-Like Enzyme Operates in the Reduction of Both Mercury and Uranium under the Control of the Glutaredoxin 1 Enzyme. J Bacteriol 195: 4138–4145. doi: 10.1128/jb.00272-13
[22]
Gutekunst K, Hoffmann D, Lommer M, Egert M, Suzuki I, et al. (2006) Metal dependence and intracellular regulation of the bidirectional NiFe-hydrogenase in Synechocystis sp PCC 6803. International Journal of Hydrogen Energy 31: 1452–1459. doi: 10.1016/j.ijhydene.2006.06.010
[23]
Carrieri D, Ananyev G, Costas AMG, Bryant DA, Dismukes GC (2008) Renewable hydrogen production by cyanobacteria: Nickel requirements for optimal hydrogenase activity. International Journal of Hydrogen Energy 33: 2014–2022. doi: 10.1016/j.ijhydene.2008.02.022
[24]
Heckman KL, Pease LR (2007) Gene splicing and mutagenesis by PCR-driven overlap extension. Nat Protoc 2: 924–932. doi: 10.1038/nprot.2007.132
[25]
Imlay JA (2013) The molecular mechanisms and physiological consequences of oxidative stress: lessons from a model bacterium. Nat Rev Microbiol 11: 443–454. doi: 10.1038/nrmicro3032
[26]
Narainsamy K, Marteyn B, Sakr S, Cassier-Chauvat C, Chauvat F (2013) Genomics of the ple?otropic glutathione system in cyanobacteria. In: Chauvat F, Cassier-Chauvat C, editors. Genomics of Cyanobacteria: Academic Press, Elsevier. pp. 157–188.
[27]
da Silva GP, Mack M, Contiero J (2009) Glycerol: a promising and abundant carbon source for industrial microbiology. Biotechnol Adv 27: 30–39. doi: 10.1016/j.biotechadv.2008.07.006
[28]
Bandyopadhyay A, Stockel J, Min H, Sherman LA, Pakrasi HB (2010) High rates of photobiological H(2) production by a cyanobacterium under aerobic conditions. Nat Commun 1: 139. doi: 10.1038/ncomms1139
[29]
Narainsamy K, Cassier-Chauvat C, Junot C, Chauvat F (2013) High performance analysis of the cyanobacterial metabolism via liquid chromatography coupled to a LTQ-Orbitrap mass spectrometer: evidence that glucose reprograms the whole carbon metabolism and triggers oxidative stress. Metabolomics 9: 21–32. doi: 10.1007/s11306-011-0382-4
[30]
Rippka R, Deruelles J, Waterbury J, Herdman M, Stanier R (1979) Generic assignements, strains histories and properties of pure culture of cyanobacteria. J Gen Microbiol 111: 1–61. doi: 10.1099/00221287-111-1-1
[31]
Jittawuttipoka T, Planchon M, Spalla O, Benzerara K, Guyot F, et al. (2013) Multidisciplinary evidences that Synechocystis PCC6803 exopolysaccharides operate in cell sedimentation and protection against salt and metal stresses. PLoS One 8: e55564. doi: 10.1371/journal.pone.0055564