Recombinant alkaline phosphatases are becoming promising protein therapeutics to prevent skeletal mineralization defects, inflammatory bowel diseases, and treat acute kidney injury. By substituting the flexible crown domain of human intestinal alkaline phosphatase (IAP) with that of the human placental isozyme (PLAP) we generated a chimeric enzyme (ChimAP) that retains the structural folding of IAP, but displays greatly increased stability, active site Zn2+ binding, increased transphosphorylation, a higher turnover number and narrower substrate specificity, with comparable selectivity for bacterial lipopolysaccharide (LPS), than the parent IAP isozyme. ChimAP shows promise as a protein therapeutic for indications such as inflammatory bowel diseases, gut dysbioses and acute kidney injury.
References
[1]
Millán JL, Narisawa S, Lemire I, Loisel TP, Boileau G, et al. (2008) Enzyme replacement therapy for murine hypophosphatasia. J Bone Miner Res 23: 777–787. doi: 10.1359/jbmr.071213
[2]
Lukas M, Kelly RE, Kantorovich LN, Otero R, Xu W, et al. (2009) Adenine monolayers on the Au(111) surface: structure identification by scanning tunneling microscopy experiment and ab initio calculations. J Chem Phys 130: 024705. doi: 10.1063/1.3046690
[3]
Moss AK, Hamarneh SR, Mohamed MM, Ramasamy S, Yammine H, et al. (2013) Intestinal alkaline phosphatase inhibits the proinflammatory nucleotide uridine diphosphate. Am J Physiol Gastrointest Liver Physiol 304: G597–604. doi: 10.1152/ajpgi.00455.2012
[4]
Chen KT, Malo MS, Beasley-Topliffe LK, Poelstra K, Millán JL, et al. (2011) A role for intestinal alkaline phosphatase in the maintenance of local gut immunity. Dig Dis Sci 56: 1020–1027. doi: 10.1007/s10620-010-1396-x
[5]
Bates JM, Akerlund J, Mittge E, Guillemin K (2007) Intestinal alkaline phosphatase detoxifies lipopolysaccharide and prevents inflammation in zebrafish in response to the gut microbiota. Cell Host Microbe 2: 371–382. doi: 10.1016/j.chom.2007.10.010
[6]
Malo MS, Alam SN, Mostafa G, Zeller SJ, Johnson PV, et al. (2010) Intestinal alkaline phosphatase preserves the normal homeostasis of gut microbiota. Gut 59: 1476–1484. doi: 10.1136/gut.2010.211706
[7]
Heemskerk S, Masereeuw R, Moesker O, Bouw MP, van der Hoeven JG, et al.. (2009) Alkaline phosphatase treatment improves renal function in severe sepsis or septic shock patients. Crit Care Med 37: : 417–423, e411.
[8]
Pickkers P, Heemskerk S, Schouten J, Laterre PF, Vincent JL, et al. (2012) Alkaline phosphatase for treatment of sepsis-induced acute kidney injury: a prospective randomized double-blind placebo-controlled trial. Crit Care 16: R14. doi: 10.1186/cc11159
[9]
Peters E, van Elsas A, Heemskerk S, Jonk L, van der Hoeven J, et al. (2013) Alkaline phosphatase as a treatment of sepsis-associated acute kidney injury. J Pharmacol Exp Ther 344: 2–7. doi: 10.1124/jpet.112.198226
[10]
Millán JL (2006) Mammalian Alkaline Phosphatases: From Biology to Applications in Medicine and Biotechnology. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co.
[11]
Meyer JL (1984) Can biological calcification occur in the presence of pyrophosphate? Archives of Biochemistry and Biophysics 231: 1–8. doi: 10.1016/0003-9861(84)90356-4
Foster BL, Nagatomo KJ, Tso HW, Tran AB, Nociti FH Jr, et al. (2013) Tooth root dentin mineralization defects in a mouse model of hypophosphatasia. J Bone Miner Res 28: 271–282. doi: 10.1002/jbmr.1767
[14]
McKee MD, Nakano Y, Masica DL, Gray JJ, Lemire I, et al. (2011) Enzyme replacement therapy prevents dental defects in a model of hypophosphatasia. J Dent Res 90: 470–476. doi: 10.1177/0022034510393517
[15]
Yadav MC, de Oliveira RC, Foster BL, Fong H, Cory E, et al. (2012) Enzyme replacement prevents enamel defects in hypophosphatasia mice. J Bone Miner Res 27: 1722–1734. doi: 10.1002/jbmr.1619
[16]
Yadav MC, Lemire I, Leonard P, Boileau G, Blond L, et al. (2011) Dose response of bone-targeted enzyme replacement for murine hypophosphatasia. Bone 49: 250–256. doi: 10.1016/j.bone.2011.03.770
[17]
Whyte MP, Greenberg CR, Salman NJ, Bober MB, McAlister WH, et al. (2012) Enzyme-replacement therapy in life-threatening hypophosphatasia. N Engl J Med 366: 904–913. doi: 10.1056/nejmoa1106173
[18]
Narisawa S, Huang L, Iwasaki A, Hasegawa H, Alpers DH, et al. (2003) Accelerated fat absorption in intestinal alkaline phosphatase knockout mice. Mol Cell Biol 23: 7525–7530. doi: 10.1128/mcb.23.21.7525-7530.2003
[19]
Nakano T, Inoue I, Koyama I, Kanazawa K, Nakamura K, et al. (2007) Disruption of the murine intestinal alkaline phosphatase gene Akp3 impairs lipid transcytosis and induces visceral fat accumulation and hepatic steatosis. Am J Physiol Gastrointest Liver Physiol 292: G1439–1449. doi: 10.1152/ajpgi.00331.2006
[20]
Goldberg RF, Austen WG Jr, Zhang X, Munene G, Mostafa G, et al. (2008) Intestinal alkaline phosphatase is a gut mucosal defense factor maintained by enteral nutrition. Proc Natl Acad Sci USA 105: 3551–3556. doi: 10.1073/pnas.0712140105
[21]
Ramasamy S, Nguyen DD, Eston MA, Alam SN, Moss AK, et al. (2011) Intestinal alkaline phosphatase has beneficial effects in mouse models of chronic colitis. Inflamm Bowel Dis 17: 532–542. doi: 10.1002/ibd.21377
[22]
Kaliannan K, Hamarneh SR, Economopoulos KP, Nasrin Alam S, Moaven O, et al. (2013) Intestinal alkaline phosphatase prevents metabolic syndrome in mice. Proc Natl Acad Sci U S A 110: 7003–7008. doi: 10.1073/pnas.1220180110
[23]
Le Du M-H, Millán JL (2002) Structural evidence of functional divergence in human alkaline phosphatases. J Biol Chem 277: 49808–49814. doi: 10.1074/jbc.m207394200
[24]
Llinas P, Stura EA, Ménez A, Kiss Z, Stigbrand T, et al. (2005) Structural studies of human placental alkaline phosphatase in complex with functional ligands. J Mol Biol 350: 441–451. doi: 10.1016/j.jmb.2005.04.068
[25]
Stec B, Cheltsov A, Millán JL (2010) Refined structures of placental alkaline phosphatase show a consistent pattern of interactions at the peripheral site. Acta Crystallogr Sect F Struct Biol Cryst Commun 66: 866–870. doi: 10.1107/s1744309110019767
[26]
Kozlenkov A, Manes T, Hoylaerts MF, Millan JL (2002) Function assignment to conserved residues in mammalian alkaline phosphatases. J Biol Chem 277: 22992–22999. doi: 10.1074/jbc.m202298200
[27]
Bossi M, Hoylaerts MF, Millán JL (1993) Modifications in a flexible surface loop modulate the isozyme-specific properties of mammalian alkaline phosphatases. J Biol Chem 268: 25409–25416.
[28]
Hoylaerts MF, Millán JL (1991) Site-directed mutagenesis and epitope-mapped monoclonal antibodies define a catalytically important conformational difference between human placental and germ cell alkaline phosphatase. Eur J Biochem 202: 605–616. doi: 10.1111/j.1432-1033.1991.tb16414.x
Le Du MH, Stigbrand T, Taussig MJ, Menez A, Stura EA (2001) Crystal structure of alkaline phosphatase from human placenta at 1.8 A resolution. Implication for a substrate specificity. J Biol Chem 276: 9158–9165. doi: 10.1074/jbc.m009250200
[31]
Kozlenkov A, Le Du M-H, Cuniasse P, Ny T, Hoylaerts MF, et al. (2004) Residues determining the binding specificity of uncompetitive inhibitors to tissue-nonspecific alkaline phosphatase. J Bone Miner Res 19: 1862–1872. doi: 10.1359/jbmr.040608
[32]
Manes T, Hoylaerts MF, Müller R, Lottspeich F, H?lke W, et al. (1998) Genetic complexity, structure, and characterization of highly active bovine intestinal alkaline phosphatases. J Biol Chem 273: 23353–23360. doi: 10.1074/jbc.273.36.23353
[33]
Bortolato M, Besson F, Roux B (1999) Role of metal ions on the secondary and quaternary structure of alkaline phosphatase from bovine intestinal mucosa. Proteins 37: 310–318. doi: 10.1002/(sici)1097-0134(19991101)37:2<310::aid-prot16>3.3.co;2-2
[34]
Hung HC, Chang GG (2001) Differentiation of the slow-binding mechanism for magnesium ion activation and zinc ion inhibition of human placental alkaline phosphatase. Protein Sci 10: 34–45. doi: 10.1110/ps.35201
[35]
Ciancaglini P, Yadav MC, Sim?o AM, Narisawa S, Pizauro JM, et al. (2010) Kinetic analysis of substrate utilization by native and TNAP-, NPP1-, or PHOSPHO1-deficient matrix vesicles. J Bone Miner Res 25: 716–723. doi: 10.1359/jbmr.091023
[36]
Lei W, Nguyen H, Brown N, Ni H, Kiffer-Moreira T, et al. (2013) Alkaline phosphatases contribute to uterine receptivity, implantation, decidualization and defense against bacterial endotoxins in hamsters. Reproduction 146: 419–432. doi: 10.1530/rep-13-0153
[37]
Bentala H, Verweij WR, Huizinga-Van der Vlag A, van Loenen-Weemaes AM, Meijer DK, et al. (2002) Removal of phosphate from lipid A as a strategy to detoxify lipopolysaccharide. Shock 18: 561–566. doi: 10.1097/00024382-200212000-00013
[38]
Hessle L, Johnson KA, Anderson HC, Narisawa S, Sali A, et al. (2002) Tissue-nonspecific alkaline phosphatase and plasma cell membrane glycoprotein-1 are central antagonistic regulators of bone mineralization. Proc Natl Acad Sci U S A 99: 9445–9449. doi: 10.1073/pnas.142063399
[39]
Murshed M, Harmey D, Millán JL, McKee MD, Karsenty G (2005) Unique coexpression in osteoblasts of broadly expressed genes accounts for the spatial restriction of ECM mineralization to bone. Genes Dev 19: 1093–1104. doi: 10.1101/gad.1276205
[40]
Narisawa S, Wennberg C, Millán JL (2001) Abnormal vitamin B6 metabolism in alkaline phosphatase knock-out mice causes multiple abnormalities, but not the impaired bone mineralization. J Pathol 193: 125–133. doi: 10.1002/1096-9896(2000)9999:9999<::aid-path722>3.0.co;2-y
[41]
Waymire KG, Mahuren JD, Jaje JM, Guilarte TR, Coburn SP, et al. (1995) Mice lacking tissue non-specific alkaline phosphatase die from seizures due to defective metabolism of vitamin B-6. Nat Genet 11: 45–51. doi: 10.1038/ng0995-45
[42]
Street SE, Kramer NJ, Walsh PL, Taylor-Blake B, Yadav MC, et al. (2013) Tissue-Nonspecific Alkaline Phosphatase Acts Redundantly with PAP and NT5E to Generate Adenosine in the Dorsal Spinal Cord. J Neurosci 33: 11314–11322. doi: 10.1523/jneurosci.0133-13.2013
[43]
Pettengill M, Robson S, Tresenriter M, Millan JL, Usheva A, et al. (2013) Soluble Ecto-5′-nucleotidase (5′-NT), Alkaline Phosphatase, and Adenosine Deaminase (ADA1) Activities in Neonatal Blood Favor Elevated Extracellular Adenosine. J Biol Chem 288: 27315–27326. doi: 10.1074/jbc.m113.484212
[44]
Verpooten GF, Nouwen EJ, Hoylaerts MF, Hendrix PG, de Broe ME (1989) Segment-specific localization of intestinal-type alkaline phosphatase in human kidney. Kidney Int 36: 617–625. doi: 10.1038/ki.1989.238
[45]
Ince C, Ergin B, Van Elsas A (2013) Recombinant Alkaline Phosphatase Modulates Inflammation and Injury in Two Rat Models of AKI. Am Soc Nephrol 24 : poster FR-PO066.
[46]
Kiefer F, Arnold K, Kunzli M, Bordoli L, Schwede T (2009) The SWISS-MODEL Repository and associated resources. Nucleic Acids Res 37: D387–392. doi: 10.1093/nar/gkn750
[47]
Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, et al. (2004) UCSF Chimera—a visualization system for exploratory research and analysis. J Comput Chem 25: 1605–1612. doi: 10.1002/jcc.20084
[48]
Guex N, Peitsch MC (1997) SWISS-MODEL and the Swiss-PdbViewer: an environment for comparative protein modeling. Electrophoresis 18: 2714–2723. doi: 10.1002/elps.1150181505
[49]
Narisawa S, Hoylaerts MF, Doctor KS, Fukuda MN, Alpers DH, et al. (2007) A novel phosphatase upregulated in Akp3 knockout mice. Am J Physiol Gastrointest Liver Physiol 293: G1068–1077. doi: 10.1152/ajpgi.00073.2007
[50]
Hoylaerts MF, Ding L, Narisawa S, Van Kerckhoven S, Millán JL (2006) Mammalian alkaline phosphatase catalysis requires active site structure stabilization via the N-terminal amino acid microenvironment. Biochemistry 45: 9756–9766. doi: 10.1021/bi052471+
[51]
Hoylaerts MF, Manes T, Millán JL (1992) Molecular mechanism of uncompetitive inhibition of human placental and germ-cell alkaline phosphatase. Biochem J 286 (Pt 1): 23–30.
[52]
Ciancaglini P, Pizauro JM, Leone FA (1997) Dependence of divalent metal ions on phosphotransferase activity of osseous plate alkaline phosphatase. J Inorg Biochem 66: 51–55. doi: 10.1016/s0162-0134(96)00159-6