全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2014 

Lethal Fighting in Nematodes Is Dependent on Developmental Pathway: Male-Male Fighting in the Entomopathogenic Nematode Steinernema longicaudum

DOI: 10.1371/journal.pone.0089385

Full-Text   Cite this paper   Add to My Lib

Abstract:

Aggressive encounters occur between competitors (particularly males) throughout the animal kingdom, and in some species can result in severe injury and death. Here we describe for the first time lethal interactions between male nematodes and provide evidence that the expression of this behaviour is developmentally controlled. Males of the entomopathogenic nematode Steinernema longicaudum coil around each other, resulting in injuries, paralysis and frequently death. The probability of death occurring between pairs of males was affected by the developmental pathway followed, being much greater among males that had passed through the infective juvenile (IJ, or dauer) stage than among males that had not. Post-IJ males are found only in newly colonised hosts, typically with few competing males present. Killing those few competitors may secure valuable resources (both females and a host cadaver for nourishment of offspring). Non-IJ males develop in subsequent generations within a host cadaver, where the presence of many closely related male competitors increases the risk:benefit ratio of fighting. Thus, passage through the IJ stage primes males for enhanced aggression in circumstances where this is more likely to result in increased reproductive success. Fighting occurred between males developing in mixed-sex social groups, indicating that it is an evolved trait and not an abnormal response to absence of females. This is supported by finding high mortality of males, but not of females, across a range of population densities in insect cadavers. We propose that these nematodes, with their relatively simple organization, may be a useful model for studies of aggression.

References

[1]  Maynard Smith J, Price GR (1973) Logic of animal conflict. Nature 246: 15–18. doi: 10.1038/246015a0
[2]  Enquist M, Leimar O (1990) The evolution of fatal fighting. Animal Behaviou 39: 1–9. doi: 10.1016/s0003-3472(05)80721-3
[3]  Hamilton WD (1979) Wingless and fighting males in fig wasps and other insects. In: Blum MS, Blum NA, editors. Reproductive competition, mate choice and sexual selection in insects.London: Academic Press. pp. 167–220.
[4]  Cook JM, Bean D, Power S (1999) Fatal fighting in fig wasps - GBH in time and space. Trends in Ecology & Evolution 14: 257–259. doi: 10.1016/s0169-5347(99)01661-4
[5]  Cook JM, Bean D (2006) Cryptic male dimorphism and fighting in a fig wasp. Animal Behaviour 71: 1095–1101. doi: 10.1016/j.anbehav.2005.07.027
[6]  Abe J, Kamimura Y, Shimada M (2005) Individual sex ratios and offspring emergence patterns in a parasitoid wasp, Melittobia australica (Eulophidae), with superparasitism and lethal combat among sons. Behavioral Ecology and Sociobiology 57: 366–373. doi: 10.1007/s00265-004-0861-y
[7]  Innocent TM, Savage J, West SA, Reece SE (2007) Lethal combat and sex ratio evolution in a parasitoid wasp. Behavioral Ecology 18: 709–715. doi: 10.1093/beheco/arm034
[8]  Leimar O, Austad S, Enquist M (1991) A test of the sequential assessment game - fighting in the bowl and doily spider Frontinella pyramitela. Evolution 45: 862–874. doi: 10.2307/2409694
[9]  DeCarvalho TN, Watson PJ, Field SA (2004) Costs increase as ritualized fighting progresses within and between phases in the sierra dome spider, Neriene litigiosa. Animal Behaviour 68: 473–482. doi: 10.1016/j.anbehav.2003.08.033
[10]  Anderson C, Cremer S, Heinze J (2003) Live and let die: why fighter males of the ant Cardiocondyla kill each other but tolerate their winged rivals. Behavioral Ecology 14: 54–62. doi: 10.1093/beheco/14.1.54
[11]  van Wilgenburg E, van Lieshout E, Elgar MA (2005) Conflict resolution strategies in meat ants (Iridomyrmex purpureus): ritualised displays versus lethal fighting. Behaviour 142: 701–716. doi: 10.1163/1568539054729150
[12]  Innocent TM, West SA, Sanderson JL, Hyrkkanen N, Reece SE (2011) Lethal combat over limited resources: testing the importance of competitors and kin. Behavioral Ecology 22: 923–931. doi: 10.1093/beheco/arq209
[13]  Gaugler R, editor (2002) Entomopathogenic Nematology. Wallingford, Oxon.: CABI. 388 p.
[14]  Ciche TA, Darby C, Ehlers RU, Forst S, Goodrich-Blair H (2006) Dangerous liaisons: The symbiosis of entomopathogenic nematodes and bacteria. Biological Control 38: 22–46. doi: 10.1016/j.biocontrol.2005.11.016
[15]  Popiel I, Grove DL, Friedman MJ (1989.) Infective juvenile formation in the insect parasitic nematode Steinernema feltiae.. Parasitology 99: 77–81. doi: 10.1017/s0031182000061047
[16]  Baliadi Y, Yoshiga T, Kondo E (2004) Infectivity and post-infection development of infective juveniles originating via endotokia matricida in entomopathogenic nematodes. Applied Entomology and Zoology 39: 61–69. doi: 10.1303/aez.2004.61
[17]  Gems D, Riddle DL (2000) Genetic, behavioral and environmental determinants of male longevity in Caenorhabditis elegans. Genetics 154: 1597–1610.
[18]  Garcia LR, LeBoeuf B, Koo P (2007) Diversity in mating behavior of hermaphroditic and male-female Caenorhabditis nematodes. Genetics 175: 1761–1771. doi: 10.1534/genetics.106.068304
[19]  Coomans A, Verschuren D, Vanderhaeghen R (1988) The demanian system, traumatic insemination and reproductive strategy in Oncholaimus oxyuris Ditlevsen (Nematoda, Oncholaimina). Zoologica Scripta 17: 15–23. doi: 10.1111/j.1463-6409.1988.tb00083.x
[20]  Adamson ML, Buck A, Noble S (1992) Transmission pattern and intraspecific competition as determinants of population-structure in pinworms (Oxyurida, Nematoda). Journal of Parasitology 78: 420–426. doi: 10.2307/3283638
[21]  Zervos S (1988) Population-dynamics of a thelastomatid nematode of cockroaches. Parasitology 96: 353–368. doi: 10.1017/s0031182000058340
[22]  Zervos S (1988) Evidence for population self-regulation, reproductive competition and arrhenotoky in a thelastomatid nematode of cockroaches. Parasitology 96: 369–379. doi: 10.1017/s0031182000058352
[23]  Abele LG, Gilchrist S (1977) Homosexual rape and sexual selection in acanthocephalan worms. Science 197: 81–83. doi: 10.1126/science.867055
[24]  Poinar GO Jr (1990) Biology and taxonomy of Steinernematidae and Heterorhabditidae. In: Gaugler R, Kaya H, editors. Entomopathogenic nematodes in biological control. Boca Raton, Fla.:CRC Press. pp. 23–61.
[25]  Moore JC, Greeff JM (2003) Resource defence in female pollinating fig wasps: two's a contest, three's a crowd. Animal Behaviour 66: 1101–1107. doi: 10.1006/anbe.2003.2304
[26]  Griffin AS, West SA, Buckling A (2004) Cooperation and competition in pathogenic bacteria. Nature 430: 1024–1027. doi: 10.1038/nature02744
[27]  Giron D, Dunn DW, Hardy ICW, Strand MR (2004) Aggression by polyembryonic wasp soldiers correlates with kinship but not resource competition. Nature 430: 676–679. doi: 10.1038/nature02721
[28]  Chasnov JR (2011) Evolution of increased self-sperm production in postdauer hermaphroditic nematodes. Evolution 65: 2117–2122. doi: 10.1111/j.1558-5646.2011.01272.x
[29]  Reinholdt K (2003) Influence of male relatedness on lethal combat in fig wasps: a theoretical analysis. Proceedings of the Royal Society, London, Series B 270: 1171–1175. doi: 10.1098/rspb.2003.2368
[30]  Murray MG (1989) Environmental constraints on fighting in flightless male fig wasps. Animal Behaviour 38: 186–193. doi: 10.1016/s0003-3472(89)80081-8
[31]  Zammit J, Schwarz MP (2000) Intersexual sibling interactions and male benevolence in a fig wasp. Animal Behaviour 60: 695–701. doi: 10.1006/anbe.2000.1522
[32]  Bean D, Cook JM (2001) Male mating tactics and lethal combat in the nonpollinating fig wasp Sycoscapter australis. Animal Behaviour 62: 535–542. doi: 10.1006/anbe.2001.1779
[33]  Kaya HK, Stock SP (1997) Techniques in insect nematology. In: Lacey L, editor. Manual of Techniques in Insect Pathology. New York: Academic Press. pp. 281–324.
[34]  Tailliez P, Pages S, Ginibre N, Boemare N (2006) New insight into diversity in the genus Xenorhabdus, including the description of ten novel species. International Journal of Systematic and Evolutionary Microbiology 56: 2805–2818. doi: 10.1099/ijs.0.64287-0
[35]  Kaya HK, Gaugler R (1993) Entomopathogenic nematodes. Annual Review of Entomology 38: 181–206. doi: 10.1146/annurev.en.38.010193.001145
[36]  Forst S, Dowds B, Boemare N, Stackebrandt E (1997) Xenorhabdus and Photorhabdus spp.: bugs that kill bugs. Annual Review of Microbiology 51: 47–72. doi: 10.1146/annurev.micro.51.1.47
[37]  Harari AR, Brockmann HJ, Landolt PJ (2000) Intrasexual mounting in the beetle Diaprepes abbreviatus (L.). Proceedings of the Royal Society B-Biological Sciences 267: 2071–2079. doi: 10.1098/rspb.2000.1251
[38]  Marco A, Lizana M (2002) The absence of species and sex recognition during mate search by male common toads, Bufo bufo. Ethology Ecology & Evolution 14: 1–8. doi: 10.1080/08927014.2002.9522756
[39]  Ryne C (2009) Homosexual interactions in bed bugs: alarm pheromones as male recognition signals. Animal Behaviour 78: 1471–1475. doi: 10.1016/j.anbehav.2009.09.033
[40]  Bailey NW, Zuk M (2009) Same-sex sexual behavior and evolution. Trends in Ecology & Evolution 24: 439–446. doi: 10.1016/j.tree.2009.03.014
[41]  Murray MG (1987) The closed environment of the fig receptacle and its influence on male conflict in the old-world fig wasp, Philotrypesis pilosa. Animal Behaviour 35: 488–506. doi: 10.1016/s0003-3472(87)80274-9
[42]  Kureck IM, Neumann A, Foitzik S (2011) Wingless ant males adjust mate-guarding behaviour to the competitive situation in the nest. Animal Behaviour 82: 339–346. doi: 10.1016/j.anbehav.2011.05.008
[43]  Rose JK, Sangha S, Rai S, Norman KR, Rankin CH (2005) Decreased sensory stimulation reduces behavioral responding, retards development, and alters neuronal connectivity in Caenorhabditis elegans. Journal of Neuroscience 25: 7159–7168. doi: 10.1523/jneurosci.1833-05.2005
[44]  Zhou C, Rao Y (2008) A subset of octopaminergic neurons are important for Drosophila aggression. Nature Neuroscience 11: 1059–1067. doi: 10.1038/nn.2164
[45]  Yeh SR, Fricke RA, Edwards DH (1996) The effect of social experience on serotonergic modulation of the escape circuit of crayfish. Science 271: 366–369. doi: 10.1126/science.271.5247.366
[46]  Stevenson PA, Hofmann HA, Schoch K, Schildberger K (2000) The fight and flight responses of crickets depleted of biogenic amines. Journal of Neurobiology 43: 107–120. doi: 10.1002/(sici)1097-4695(200005)43:2<107::aid-neu1>3.0.co;2-c
[47]  Rudin FS, Briffa M (2011) The logical polyp: assessments and decisions during contests in the beadlet anemone Actinia equina. Behavioral Ecology 22: 1278–1285. doi: 10.1093/beheco/arr125
[48]  Rudin FS, Briffa M (2012) Is boldness a resource-holding potential trait? Fighting prowess and changes in startle response in the sea anemone, Actinia equina. Proceedings of the Royal Society B-Biological Sciences 279: 1904–1910. doi: 10.1098/rspb.2011.2418
[49]  Emmons SW, Lipton J (2003) Genetic basis of male sexual behavior. Journal of Neurobiology 54: 93–110. doi: 10.1002/neu.10163
[50]  Lipton J, Kleemann G, Ghosh R, Lints R, Emmons SW (2004) Mate searching in Caenorhabditis elegans: A genetic model for sex drive in a simple invertebrate. Journal of Neuroscience 24: 7427–7434. doi: 10.1523/jneurosci.1746-04.2004
[51]  Jarrell TA, Wang Y, Bloniarz AE, Brittin CA, Xu M, et al. (2012) The Connectome of a Decision-Making Neural Network. Science 337: 437–444. doi: 10.1126/science.1221762
[52]  Hensch TK (2004) Critical period regulation. Annual Review of Neuroscience 27: 549–579. doi: 10.1146/annurev.neuro.27.070203.144327
[53]  Del Giudice M, Angeleri R, Manera V (2009) The juvenile transition: A developmental switch point in human life history. Developmental Review 29: 1–31. doi: 10.1016/j.dr.2008.09.001
[54]  Hall SE, Beverly M, Russ C, Nusbaum C, Sengupta P (2010) A Cellular Memory of Developmental History Generates Phenotypic Diversity in C. elegans. Current Biology 20: 149–155. doi: 10.1016/j.cub.2009.11.035
[55]  Hall SE, Chirn GW, Lau NC, Sengupta P (2013) RNAi pathways contribute to developmental history-dependent phenotypic plasticity in C. elegans. RNA 19: 306–319. doi: 10.1261/rna.036418.112
[56]  Emmons SW (2012) The Mood of a Worm. Science 338: 475–476. doi: 10.1126/science.1230251
[57]  Calahorro F, Ruiz-Rubio M (2011) Caenorhabditis elegans as an experimental tool for the study of complex neurological diseases: Parkinson's disease, Alzheimer's disease and autism spectrum disorder. Invertebrate Neuroscience 11: 73–83. doi: 10.1007/s10158-011-0126-1
[58]  Curran KP, Chalasani SH (2012) Serotonin circuits and anxiety: what can invertebrates teach us? Invertebrate Neuroscience 12: 81–92. doi: 10.1007/s10158-012-0140-y
[59]  The C. elegans research community, eds (2005-). WormBook: The online review of C. elegans biology. http://www.wormbook.org.
[60]  Dillman AR, Guillermin ML, Lee JH, Kim B, Sternberg PW, et al. (2012) Olfaction shapes host-parasite interactions in parasitic nematodes. Proceedings of the National Academy of Sciences of the United States of America 109: E2324–E2333. doi: 10.1073/pnas.1211436109
[61]  Murfin KE, Dillman AR, Foster JM, Bulgheresi S, Slatko BE, et al. (2012) Nematode-Bacterium Symbioses - Cooperation and Conflict Revealed in the “Omics” Age. Biological Bulletin 223: 85–102.
[62]  Kravitz EA, Huber R (2003) Aggression in invertebrates. Current Opinion in Neurobiology 13: 736–743. doi: 10.1016/j.conb.2003.10.003
[63]  Zwarts L, Versteven M, Callaerts P (2012) Genetics and neurobiology of aggression in Drosophila. Fly 6: 35–48. doi: 10.4161/fly.19249

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133