全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2014 

JAK2-Centered Interactome Hotspot Identified by an Integrative Network Algorithm in Acute Stanford Type A Aortic Dissection

DOI: 10.1371/journal.pone.0089406

Full-Text   Cite this paper   Add to My Lib

Abstract:

The precise mechanisms underlying dissections, especially those without connective tissue diseases or congenital vascular diseases, are incompletely understood. This study attempted to identify both the expression profile of the dissected ascending aorta and the interactome hotspots associated with the disease, using microarray technology and gene regulatory network analysis. There were 2,737 genes differentially expressed between patients with acute Stanford type A aortic dissection and controls. Eight interactome hotspots significantly associated with aortic dissection were identified by an integrative network algorithm. In particular, we identified a JAK2-centered expression module, which was validated in an independent gene expression microarray data set, and which was characterized by over-expressed cytokines and receptors in acute aortic dissection cases, indicating that JAK2 may play a key role in the inflammatory process, which potentially contributes to the occurrence of acute aortic dissection. Overall, the analytical strategy used in this study offered the possibility to identify functional relevant network modules and subsequently facilitated the biological interpretation in the complicated disease.

References

[1]  Mészáros I, Mórocz J, Szlávi J, Schmidt J, Tornóci L, et al. (2000) Epidemiology and clinicopathology of aortic dissection. Chest 117: 1271–1278.
[2]  Golledge J, Eagle KA (2008) Acute aortic dissection. Lancet 372: 55–66. doi: 10.1016/s0140-6736(08)60994-0
[3]  Bernardini C, Censi F, Lattanzi W, Barba M, Calcagnini G, et al. (2013) Mitochondrial network genes in the skeletal muscle of amyotrophic lateral sclerosis patients. PLoS One 8: e57739. doi: 10.1371/journal.pone.0057739
[4]  Liu ZP, Wang Y, Zhang XS, Chen L (2012) Network-based analysis of complex diseases. IET Syst Biol 6: 22–33. doi: 10.1049/iet-syb.2010.0052
[5]  Smyth GK (2004) Linear models and empirical bayes methods for assessing differential expression in microarray experiments. Stat Appl Genet Mol Biol 3: Article3. doi: 10.2202/1544-6115.1027
[6]  Storey JD, Tibshirani R (2003) Statistical significance for genomewide studies. Proc Natl Acad Sci U S A 100: 9440–9445. doi: 10.1073/pnas.1530509100
[7]  Schmittgen TD, Livak KJ (2008) Analyzing real-time PCR data by the comparative C(T) method. Nat Protoc 3: 1101–1108. doi: 10.1038/nprot.2008.73
[8]  Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25: 402–408. doi: 10.1006/meth.2001.1262
[9]  Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, et al. (2005) Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci U S A 102: 15545–15550. doi: 10.1073/pnas.0506580102
[10]  Cerami EG, Gross BE, Demir E, Rodchenkov I, Babur O, et al. (2011) Pathway Commons, a web resource for biological pathway data. Nucleic Acids Res 39: D685–690. doi: 10.1093/nar/gkq1039
[11]  Newman ME (2006) Modularity and community structure in networks. Proc Natl Acad Sci U S A 103: 8577–8582. doi: 10.1073/pnas.0601602103
[12]  Chuang HY, Lee E, Liu YT, Lee D, Ideker T (2007) Network-based classification of breast cancer metastasis. Mol Syst Biol 3: 140. doi: 10.1038/msb4100180
[13]  Reichardt J, Bornholdt S (2006) Statistical mechanics of community detection. Phys Rev E Stat Nonlin Soft Matter Phys 74: 016110. doi: 10.1103/physreve.74.016110
[14]  West J, Beck S, Wang X, Teschendorff AE (2013) An integrative network algorithm identifies age-associated differential methylation interactome hotspots targeting stem-cell differentiation pathways. Sci Rep 3: 1630. doi: 10.1038/srep01630
[15]  Weis-Müller BT, Modlich O, Drobinskaya I, Unay D, Huber R, et al. (2006) Gene expression in acute Stanford type A dissection: a comparative microarray study. J Transl Med 4: 29.
[16]  Papaspyridonos M, Smith A, Burnand KG, Taylor P, Padayachee S, et al. (2006) Novel candidate genes in unstable areas of human atherosclerotic plaques. Arterioscler Thromb Vasc Biol 26: 1837–1844. doi: 10.1161/01.atv.0000229695.68416.76
[17]  Ca?adas V, Vilacosta I, Bruna I, Fuster V (2010) Marfan syndrome. Part 1: pathophysiology and diagnosis. Nat Rev Cardiol 7: 256–265. doi: 10.1038/nrcardio.2010.30
[18]  Pepin M, Schwarze U, Superti-Furga A, Byers PH (2000) Clinical and genetic features of Ehlers-Danlos syndrome type IV, the vascular type. N Engl J Med 342: 673–680. doi: 10.1056/nejm200003093421001
[19]  del Porto F, Proietta M, Tritapepe L, Miraldi F, Koverech A, et al. (2010) Inflammation and immune response in acute aortic dissection. Ann Med 42: 622–629. doi: 10.3109/07853890.2010.518156
[20]  Jones KG, Brull DJ, Brown LC, Sian M, Greenhalgh RM, et al. (2001) Interleukin-6 (IL-6) and the prognosis of abdominal aortic aneurysms. Circulation 103: 2260–2265. doi: 10.1161/01.cir.103.18.2260
[21]  Dawson J, Cockerill GW, Choke E, Belli AM, Loftus I, et al. (2007) Aortic aneurysms secrete interleukin-6 into the circulation. J Vasc Surg 45: 350–356. doi: 10.1016/j.jvs.2006.09.049
[22]  O’Keefe JH, Carter MD, Lavie CJ (2009) Primary and secondary prevention of cardiovascular diseases: a practical evidence-based approach. Mayo Clin Proc 84: 741–757. doi: 10.4065/84.8.741
[23]  Brasier AR (2010) The nuclear factor-kappaB-interleukin-6 signalling pathway mediating vascular inflammation. Cardiovasc Res 86: 211–218. doi: 10.1093/cvr/cvq076
[24]  Maiellaro K, Taylor WR (2007) The role of the adventitia in vascular inflammation. Cardiovasc Res 75: 640–648. doi: 10.1016/j.cardiores.2007.06.023
[25]  Suzuki S, Takeishi Y, Niizeki T, Koyama Y, Kitahara T, et al. (2008) Pentraxin 3, a new marker for vascular inflammation, predicts adverse clinical outcomes in patients with heart failure. Am Heart J 155: 75–81. doi: 10.1016/j.ahj.2007.08.013
[26]  Ikeda U, Ito T, Shimada K (2001) Interleukin-6 and acute coronary syndrome. Clin Cardiol 24: 701–704. doi: 10.1002/clc.4960241103
[27]  Schieffer B, Schieffer E, Hilfiker-Kleiner D, Hilfiker A, Kovanen PT, et al (2000) Expression of angiotensin II and interleukin 6 in human coronary atherosclerotic plaques: potential implications for inflammation and plaque instability. Circulation 101: 1372–1378. doi: 10.1161/01.cir.101.12.1372
[28]  Yamaoka K, Saharinen P, Pesu M, Holt VE 3rd, Silvennoinen O, et al. (2004) The Janus kinases (Jaks). Genome Biol 5: 253. doi: 10.1186/gb-2004-5-12-253
[29]  Chandesris MO, Azarine A, Ong KT, Taleb S, Boutouyrie P, et al. (2012) Frequent and widespread vascular abnormalities in human signal transducer and activator of transcription 3 deficiency. Circ Cardiovasc Genet 5: 25–34. doi: 10.1161/circgenetics.111.961235
[30]  Freeman AF, Avila EM, Shaw PA, Davis J, Hsu AP, et al. (2011) Coronary artery abnormalities in Hyper-IgE syndrome. J Clin Immunol 31: 338–345. doi: 10.1007/s10875-011-9515-9
[31]  Nespital T, Strous GJ (2012) The Jak/STAT signaling pathway is downregulated at febrile temperatures. PLoS One 7: e49374. doi: 10.1371/journal.pone.0049374
[32]  Martinez-Moczygemba M, Huston DP, Lei JT (2007) JAK kinases control IL-5 receptor ubiquitination, degradation, and internalization. J Leukoc Biol 81: 1137–1148. doi: 10.1189/jlb.0706465
[33]  Sutton SA, Assa’ad AH, Rothenberg ME (2005) Anti-IL-5 and hypereosinophilic syndromes. Clin Immunol 115: 51–60. doi: 10.1016/j.clim.2005.02.006
[34]  He R, Guo DC, Estrera AL, Safi HJ, Huynh TT, et al. (2006) Characterization of the inflammatory and apoptotic cells in the aortas of patients with ascending thoracic aortic aneurysms and dissections. J Thorac Cardiovasc Surg 131: 671–678. doi: 10.1016/j.jtcvs.2005.09.018

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133