全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2014 

Dynamic Spatiotemporal Trends of Dengue Transmission in the Asia-Pacific Region, 1955–2004

DOI: 10.1371/journal.pone.0089440

Full-Text   Cite this paper   Add to My Lib

Abstract:

Background Dengue fever (DF) is one of the most important emerging arboviral human diseases. Globally, DF incidence has increased by 30-fold over the last fifty years, and the geographic range of the virus and its vectors has expanded. The disease is now endemic in more than 120 countries in tropical and subtropical parts of the world. This study examines the spatiotemporal trends of DF transmission in the Asia-Pacific region over a 50-year period, and identified the disease’s cluster areas. Methodology and Findings The World Health Organization’s DengueNet provided the annual number of DF cases in 16 countries in the Asia-Pacific region for the period 1955 to 2004. This fifty-year dataset was divided into five ten-year periods as the basis for the investigation of DF transmission trends. Space-time cluster analyses were conducted using scan statistics to detect the disease clusters. This study shows an increasing trend in the spatiotemporal distribution of DF in the Asia-Pacific region over the study period. Thailand, Vietnam, Laos, Singapore and Malaysia are identified as the most likely clusters (relative risk = 13.02) of DF transmission in this region in the period studied (1995 to 2004). The study also indicates that, for the most part, DF transmission has expanded southwards in the region. Conclusions This information will lead to the improvement of DF prevention and control strategies in the Asia-Pacific region by prioritizing control efforts and directing them where they are most needed.

References

[1]  Halstead SB (2007) Dengue. Lancet 370: 1644–1652. doi: 10.1016/s0140-6736(07)61687-0
[2]  Beatty ME, Beutels P, Meltzer MI, Shepard DS, Hombach J, et al. (2011) Health economics of dengue: a systematic literature review and expert panel’s assessment. Am J Trop Med Hyg 84: 473–488. doi: 10.4269/ajtmh.2011.10-0521
[3]  WHO (2012) Dengue and severe dengue World Health Organization.
[4]  Wilder-Smith A (2012) Dengue infections in travellers. Paediatr Int Child Health 32 Suppl 128–32. doi: 10.1179/2046904712z.00000000050
[5]  Guzman A, Istúriz RE (2010) Update on the global spread of dengue. Int J Antimicrob Agents 36: S40–42. doi: 10.1016/j.ijantimicag.2010.06.018
[6]  Gubler DJ (2004) The changing epidemiology of yellow fever and dengue, 1900 to 2003: full circle? Comp Immunol Microbiol Infect Dis 27: 319–330. doi: 10.1016/j.cimid.2004.03.013
[7]  Gubler DJ (1998) Dengue and dengue hemorrhagic fever. Clin Microbiol Rev 11: 480–496. doi: 10.1016/b978-0-443-06668-9.50077-6
[8]  Simmons CP, Farrar JJ, van Vinh Chau N, Wills B (2012) Dengue. N Engl J Med 366: 1423–1432. doi: 10.1056/nejmra1110265
[9]  Robertson C, Nelson TA (2010) Review of software for space-time disease surveillance. Int J Health Geogr 9: 9–16. doi: 10.1186/1476-072x-9-16
[10]  Abrams AM, Kleinman KP (2007) A SaTScan macro accessory for cartography (SMAC) package implemented with SAS software. Int J Health Geogr 6: 6. doi: 10.1186/1476-072x-6-6
[11]  Kulldorf M (2010) SaTScan? User Guide for Version 9.0. Available: http://www.satscan.org/.
[12]  Kulldorff M, Feuer EJ, Miller BA, Freedman LS (1997) Breast cancer clusters in the northeast United States: a geographic analysis. Am J Epidemiol 146: 161–170. doi: 10.1093/oxfordjournals.aje.a009247
[13]  Thai KTD, Nagelkerke N, Phuong HL, Nga TTT, Giao PT, et al. (2010) Geographical heterogeneity of dengue transmission in two villages in southern Vietnam. Epidemiol Infect 138: 585–591. doi: 10.1017/s095026880999046x
[14]  Tran A, Deparis X, Dussart P, Morvan J, Rabarison P, et al. (2004) Dengue spatial and temporal patterns, French Guiana, 2001. Emerg Infect Dis 10: 615–621. doi: 10.3201/eid1004.030186
[15]  Wen T-H, Lin NH, Lin C-H, King C-C, Su M-D (2006) Spatial mapping of temporal risk characteristics to improve environmental health risk identification: A case study of a dengue epidemic in Taiwan. Sci Total Environ 367: 631–640. doi: 10.1016/j.scitotenv.2006.02.009
[16]  Wu PC, Lay JG, Guo HR, Lin CY, Lung SC, et al. (2009) Higher temperature and urbanization affect the spatial patterns of dengue fever transmission in subtropical Taiwan. Sci Total Environ 407: 2224–2233. doi: 10.1016/j.scitotenv.2008.11.034
[17]  Mammen MP, Pimgate C, Koenraadt CJM, Rothman AL, Aldstadt J, et al. (2008) Spatial and temporal clustering of dengue virus transmission in Thai villages. PLoS Med 5: e205. doi: 10.1371/journal.pmed.0050205
[18]  Hu W, Clements A, Williams G, Tong S, Mengersen K (2012) Spatial patterns and socioecological drivers of dengue fever transmission in Queensland, Australia. Environ Health Perspect 120: 260–266. doi: 10.1289/ehp.1003270
[19]  Vanwambeke SO, van Benthem BH, Khantikul N, Burghoorn-Maas C, Panart K, et al. (2006) Multi-level analyses of spatial and temporal determinants for dengue infection. Int J Health Geogr 5: 5. doi: 10.1186/1476-072x-5-5
[20]  CIA (2012) CIA World Factbook. Central Intelligence Agency.
[21]  Naish S, Hu W, Mengersen K, Tong S (2011) Spatial and temporal clusters of Barmah Forest virus disease in Queensland, Australia. Trop Med Int Health 16: 884–893. doi: 10.1111/j.1365-3156.2011.02775.x
[22]  Chen J, Roth RE, Naito AT, Lengerich EJ, Maceachren AM (2008) Geovisual analytics to enhance spatial scan statistic interpretation: an analysis of U.S. cervical cancer mortality. Int J Health Geogr 7: 57. doi: 10.1186/1476-072x-7-57
[23]  Tatem AJ, Hay SI, Rogers DJ (2006) Global traffic and disease vector dispersal. Proc Natl Acad Sci U S A 103: 6242–6247. doi: 10.1073/pnas.0508391103
[24]  Gubler DJ (2011) Dengue, Urbanization and Globalization: The Unholy Trinity of the 21(st) Century. Trop Med Health 39: 3–11. doi: 10.2149/tmh.2011-s05
[25]  Gubler DJ (2002) Epidemic dengue/dengue hemorrhagic fever as a public health, social and economic problem in the 21st century. Trends Microbiol 10: 100–103. doi: 10.1016/s0966-842x(01)02288-0
[26]  Kyle JL, Harris E (2008) Global spread and persistence of dengue. Annu Rev Microbiol 62: 71–92. doi: 10.1146/annurev.micro.62.081307.163005
[27]  Arunachalam N, Tana S, Espino F, Kittayapong P, Abeyewickreme W, et al. (2010) Eco-bio-social determinants of dengue vector breeding: a multicountry study in urban and periurban Asia. Bull World Health Organ 88: 173–183. doi: 10.2471/blt.09.067892
[28]  Gubler DJ (2004) Cities spawn epidemic dengue viruses. Nat Med 10: 129–130. doi: 10.1038/nm0204-129
[29]  Schmidt WP, Suzuki M, Thiem VD, White RG, Tsuzuki A, et al. (2011) Population density, water supply, and the risk of dengue fever in Vietnam: cohort study and spatial analysis. PLoS Med 8: e1001082. doi: 10.1371/journal.pmed.1001082
[30]  Wilder-Smith A, Gubler DJ (2008) Geographic expansion of dengue: the impact of international travel. Med Clin North Am 92: 1377–1390. doi: 10.1016/j.mcna.2008.07.002
[31]  Benitez MA (2009) Climate change could affect mosquito-borne diseases in Asia. Lancet 373: 1070–1070. doi: 10.1016/s0140-6736(09)60634-6
[32]  Patz JA, Campbell-Lendrum D, Holloway T, Foley JA (2005) Impact of regional climate change on human health. Nature 438: 310–317. doi: 10.1038/nature04188
[33]  Banu S, Hu W, Hurst C, Tong S (2011) Dengue transmission in the Asia-Pacific region: impact of climate change and socio-environmental factors. Trop Med Int Health 16: 598–607. doi: 10.1111/j.1365-3156.2011.02734.x
[34]  Arcari P, Tapper N, Pfueller S (2007) Regional variability in relationships between climate and dengue/DHF in Indonesia. Singapore J Trop Geo 28: 251–272. doi: 10.1111/j.1467-9493.2007.00300.x
[35]  Barbazan P, Yoksan S, Gonzalez JP (2002) Dengue hemorrhagic fever epidemiology in Thailand: description and forecasting of epidemics. Microbes Infect 4: 699–705. doi: 10.1016/s1286-4579(02)01589-7
[36]  Cuong HQ, Hien NT, Duong TN, Phong TV, Cam NN, et al. (2011) Quantifying the emergence of dengue in Hanoi, Vietnam: 1998–2009. PLoS Negl Trop Dis 5: e1322. doi: 10.1371/journal.pntd.0001322
[37]  Guzman MG, Halstead SB, Artsob H, Buchy P, Farrar J, et al. (2010) Dengue: a continuing global threat. Nat Rev Microbiol 8: S7–16. doi: 10.1038/nrmicro2460
[38]  IPCC (2007) Climate change 2007: the physical science basis: contribution of working group I to the fourth assessment report of the Intergovernmental Panel on Climate Change. Cambridge, UK and NY, USA: Cambridge University Press.
[39]  Hales S, de Wet N, Maindonald J, Woodward A (2002) Potential effect of population and climate changes on global distribution of dengue fever: an empirical model. Lancet 360: 830–834. doi: 10.1016/s0140-6736(02)09964-6
[40]  Woodruff RE, McMichael T, Butler C, Hales S (2006) Action on climate change: the healthrisks of procastinating. Aust N Z J Public Health 30: 567–571. doi: 10.1111/j.1467-842x.2006.tb00788.x
[41]  Hu W, Clements A, Williams G, Tong S (2011) Spatial analysis of notified dengue fever infections. Epidemiol Infect 139: 391–399. doi: 10.1017/s0950268810000713
[42]  Carbajo AE, Cardo MV, Vezzani D (2012) Is temperature the main cause of dengue rise in non-endemic countries? The case of Argentina. Int J Health Geogr 11: 26. doi: 10.1186/1476-072x-11-26
[43]  Russell RC (2009) Mosquito-borne disease and climate change in Australia: time for a reality check. Australian Journal of Entomology 48: 1–7. doi: 10.1111/j.1440-6055.2008.00677.x

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133