Background The quest to understand the neurobiology of schizophrenia and bipolar disorder is ongoing with multiple lines of evidence indicating abnormalities of glia, mitochondria, and glutamate in both disorders. Despite high heritability estimates of 81% for schizophrenia and 75% for bipolar disorder, compelling links between findings from neurobiological studies, and findings from large-scale genetic analyses, are only beginning to emerge. Method Ten publically available gene sets (pathways) related to glia, mitochondria, and glutamate were tested for association to schizophrenia and bipolar disorder using MAGENTA as the primary analysis method. To determine the robustness of associations, secondary analyses were performed with: ALIGATOR, INRICH, and Set Screen. Data from the Psychiatric Genomics Consortium (PGC) were used for all analyses. There were 1,068,286 SNP-level p-values for schizophrenia (9,394 cases/12,462 controls), and 2,088,878 SNP-level p-values for bipolar disorder (7,481 cases/9,250 controls). Results The Glia-Oligodendrocyte pathway was associated with schizophrenia, after correction for multiple tests, according to primary analysis (MAGENTA p = 0.0005, 75% requirement for individual gene significance) and also achieved nominal levels of significance with INRICH (p = 0.0057) and ALIGATOR (p = 0.022). For bipolar disorder, Set Screen yielded nominally and method-wide significant associations to all three glial pathways, with strongest association to the Glia-Astrocyte pathway (p = 0.002). Conclusions Consistent with findings of white matter abnormalities in schizophrenia by other methods of study, the Glia-Oligodendrocyte pathway was associated with schizophrenia in our genomic study. These findings suggest that the abnormalities of myelination observed in schizophrenia are at least in part due to inherited factors, contrasted with the alternative of purely environmental causes (e.g. medication effects or lifestyle). While not the primary purpose of our study, our results also highlight the consequential nature of alternative choices regarding pathway analysis, in that results varied somewhat across methods, despite application to identical datasets and pathways.
References
[1]
Hyman SE (2012) Revolution stalled. Sci Transl Med 4: 155cm11 doi:10.1126/scitranslmed.3003142.
[2]
Sullivan PF, Daly MJ, O'Donovan M (2012) Genetic architectures of psychiatric disorders: the emerging picture and its implications. Nat Rev Genet 13: 537–551 doi:10.1038/nrg3240.
[3]
Purcell SM, Wray NR, Stone JL, Visscher PM, O'Donovan MC, et al. (2009) Common polygenic variation contributes to risk of schizophrenia and bipolar disorder. Nature 460: 748–752 doi:10.1038/nature08185.
[4]
Psychiatric GWAS Consortium Bipolar Disorder Working S (2011) Large-scale genome-wide association analysis of bipolar disorder identifies a new susceptibility locus near ODZ4. Nature Genetics 43: 977–983 doi:10.1038/ng.943.
[5]
Cross-Disorder Group of the Psychiatric Genomics Consortium, Smoller JW, Craddock N, Kendler K, Lee PH, et al (2013) Identification of risk loci with shared effects on five major psychiatric disorders: a genome-wide analysis. Lancet 381: 1371–1379 doi:10.1016/S0140-6736(12)62129-1.
[6]
Lips ES, Cornelisse LN, Toonen RF, Min JL, Hultman CM, et al. (2011) Functional gene group analysis identifies synaptic gene groups as risk factor for schizophrenia. Molecular Psychiatry 17: 996–1006 doi:10.1038/mp.2011.117.
[7]
O'Dushlaine C, Kenny E, Heron E, Donohoe G, Gill M, et al. (2011) Molecular pathways involved in neuronal cell adhesion and membrane scaffolding contribute to schizophrenia and bipolar disorder susceptibility. Mol Psychiatry 16: 286–292 doi:10.1038/mp.2010.7.
[8]
Rajkowska G, Halaris A, Selemon LD (2001) Reductions in neuronal and glial density characterize the dorsolateral prefrontal cortex in bipolar disorder. Biol Psychiatry 49: 741–752. doi: 10.1016/s0006-3223(01)01080-0
[9]
Uranova NA, Vostrikov VM, Orlovskaya DD, Rachmanova VI (2004) Oligodendroglial density in the prefrontal cortex in schizophrenia and mood disorders: a study from the Stanley Neuropathology Consortium. Schizophr Res 67: 269–275 doi:10.1016/S0920-9964(03)00181-6.
[10]
Takahashi N, Sakurai T, Davis KL, Buxbaum JD (2011) Linking oligodendrocyte and myelin dysfunction to neurocircuitry abnormalities in schizophrenia. Prog Neurobiol 93: 13–24 doi:10.1016/j.pneurobio.2010.09.004.
[11]
Kety SS (1950) Blood flow and metabolism of the human brain in health and disease. Trans Stud Coll Physicians Phila 18: 103–108.
[12]
McBride HM, Neuspiel M, Wasiak S (2006) Mitochondria: more than just a powerhouse. Curr Biol 16: R551–560 doi:10.1016/j.cub.2006.06.054.
[13]
Ben-Shachar D, Laifenfeld D (2004) Mitochondria, synaptic plasticity, and schizophrenia. Int Rev Neurobiol 59: 273–296 doi:10.1016/S0074-7742(04)59011-6.
[14]
Prabakaran S, Swatton JE, Ryan MM, Huffaker SJ, Huang JT-J, et al.. (2004) Mitochondrial dysfunction in schizophrenia: evidence for compromised brain metabolism and oxidative stress. Mol Psychiatry 9: 684–697, 643. doi:10.1038/sj.mp.4001511.
[15]
Rezin GT, Amboni G, Zugno AI, Quevedo J, Streck EL (2009) Mitochondrial dysfunction and psychiatric disorders. Neurochem Res 34: 1021–1029 doi:10.1007/s11064-008-9865-8.
[16]
Manji H, Kato T, Di Prospero NA, Ness S, Beal MF, et al. (2012) Impaired mitochondrial function in psychiatric disorders. Nat Rev Neurosci 13: 293–307 doi:10.1038/nrn3229.
[17]
Kato T, Kato N (2000) Mitochondrial dysfunction in bipolar disorder. Bipolar Disorders 2: 180–190 doi:10.1034/j.1399-5618.2000.020305.x.
[18]
Konradi C EM (2004) Molecular evidence for mitochondrial dysfunction in bipolar disorder. Arch Gen Psychiatry 61: 300–308 doi:10.1001/archpsyc.61.3.300.
[19]
Stork C, Renshaw PF (2005) Mitochondrial dysfunction in bipolar disorder: evidence from magnetic resonance spectroscopy research. Mol Psychiatry 10: 900–919 doi:10.1038/sj.mp.4001711.
[20]
Cataldo AM, McPhie DL, Lange NT, Punzell S, Elmiligy S, et al. (2010) Abnormalities in mitochondrial structure in cells from patients with bipolar disorder. Am J Pathol 177: 575–585 doi:10.2353/ajpath.2010.081068.
[21]
Javitt DC (2004) Glutamate as a therapeutic target in psychiatric disorders. Mol Psychiatry 9: 984–997 doi:10.1038/sj.mp.4001551.
[22]
Coyle JT (2006) Glutamate and schizophrenia: beyond the dopamine hypothesis. Cell Mol Neurobiol 26: 365–384 doi:10.1007/s10571-006-9062-8.
[23]
Ongur D, Jensen JE, Prescot AP, Stork C, Lundy M, et al. (2008) Abnormal Glutamatergic Neurotransmission and Neuronalglial Interactions in Acute Mania. Biol Psychiatry 64: 718–726 doi:10.1016/j.biopsych.2008.05.014.
[24]
?ngür D, Haddad S, Prescot AP, Jensen JE, Siburian R, et al. (2011) Relationship between genetic variation in the glutaminase gene GLS1 and brain glutamine/glutamate ratio measured in vivo. Biol Psychiatry 70: 169–174 doi:10.1016/j.biopsych.2011.01.033.
[25]
Segrè AV, Groop L, Mootha VK, Daly MJ, Altshuler D, et al. (2010) Common Inherited Variation in Mitochondrial Genes Is Not Enriched for Associations with Type 2 Diabetes or Related Glycemic Traits. PLoS Genet 6: e1001058 doi:10.1371/journal.pgen.1001058.
[26]
Holmans P, Green EK, Pahwa JS, Ferreira MAR, Purcell SM, et al. (2009) Gene Ontology Analysis of GWA Study Data Sets Provides Insights into the Biology of Bipolar Disorder. The American Journal of Human Genetics 85: 13–24 doi:10.1016/j.ajhg.2009.05.011.
[27]
Lee PH, O'Dushlaine C, Thomas B, Purcell SM (2012) INRICH: interval-based enrichment analysis for genome-wide association studies. Bioinformatics 28: 1797–1799 doi:10.1093/bioinformatics/bts191.
[28]
Moskvina V, O'Dushlaine C, Purcell S, Craddock N, Holmans P, et al. (2011) Evaluation of an approximation method for assessment of overall significance of multiple-dependent tests in a genomewide association study. Genet Epidemiol 35: 861–866 doi:10.1002/gepi.20636.
[29]
Psychiatric GWAS Consortium R (2011) Genome-wide association study identifies five new schizophrenia loci. Nat Genet 43: 969–976 doi:10.1038/ng.940.
[30]
Pickrell JK, Marioni JC, Pai AA, Degner JF, Engelhardt BE, et al. (2010) Understanding mechanisms underlying human gene expression variation with RNA sequencing. Nature 464: 768–772 doi:10.1038/nature08872.
[31]
Gene Ontology Consortium (2004) The Gene Ontology (GO) database and informatics resource. Nucleic Acids Research 32: 258D–261 doi:10.1093/nar/gkh036.
[32]
Matthews L, Gopinath G, Gillespie M, Caudy M, Croft D, et al. (2009) Reactome knowledgebase of human biological pathways and processes. Nucleic Acids Res 37: D619–622 doi:10.1093/nar/gkn863.
[33]
Storey JD (2002) A direct approach to false discovery rates. Journal of the Royal Statistical Society: Series B (Statistical Methodology) 64: 479–498 doi:10.1111/1467-9868.00346.
[34]
Development Core Team, R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0 (2005). Available: http://www.R-project.org.Accessed: 4 Oct 2013.
[35]
Storey JD, Tibshirani R (2003) Statistical significance for genomewide studies. Proc Natl Acad Sci U S A 100: 9440–9445 doi:10.1073/pnas.1530509100.
[36]
White T, Nelson M, Lim KO (2008) Diffusion tensor imaging in psychiatric disorders. Top Magn Reson Imaging 19: 97–109 doi:10.1097/RMR.0b013e3181809f1e.
[37]
Rajkowska G, Miguel-Hidalgo JJ (2007) Gliogenesis and glial pathology in depression. CNS Neurol Disord Drug Targets 6: 219–233. doi: 10.2174/187152707780619326
[38]
Goudriaan A, Leeuw C de, Ripke S, Hultman CM, Sklar P, et al.. (2013) Specific Glial Functions Contribute to Schizophrenia Susceptibility. Schizophr Bull: sbt109. doi:10.1093/schbul/sbt109.
[39]
Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126: 663–676 doi:10.1016/j.cell.2006.07.024.