全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2014 

Effect of Age on Complexity and Causality of the Cardiovascular Control: Comparison between Model-Based and Model-Free Approaches

DOI: 10.1371/journal.pone.0089463

Full-Text   Cite this paper   Add to My Lib

Abstract:

The proposed approach evaluates complexity of the cardiovascular control and causality among cardiovascular regulatory mechanisms from spontaneous variability of heart period (HP), systolic arterial pressure (SAP) and respiration (RESP). It relies on construction of a multivariate embedding space, optimization of the embedding dimension and a procedure allowing the selection of the components most suitable to form the multivariate embedding space. Moreover, it allows the comparison between linear model-based (MB) and nonlinear model-free (MF) techniques and between MF approaches exploiting local predictability (LP) and conditional entropy (CE). The framework was applied to study age-related modifications of complexity and causality in healthy humans in supine resting (REST) and during standing (STAND). We found that: 1) MF approaches are more efficient than the MB method when nonlinear components are present, while the reverse situation holds in presence of high dimensional embedding spaces; 2) the CE method is the least powerful in detecting age-related trends; 3) the association of HP complexity on age suggests an impairment of cardiac regulation and response to STAND; 4) the relation of SAP complexity on age indicates a gradual increase of sympathetic activity and a reduced responsiveness of vasomotor control to STAND; 5) the association from SAP to HP on age during STAND reveals a progressive inefficiency of baroreflex; 6) the reduced connection from HP to SAP with age might be linked to the progressive exploitation of Frank-Starling mechanism at REST and to the progressive increase of peripheral resistances during STAND; 7) at REST the diminished association from RESP to HP with age suggests a vagal withdrawal and a gradual uncoupling between respiratory activity and heart; 8) the weakened connection from RESP to SAP with age might be related to the progressive increase of left ventricular thickness and vascular stiffness and to the gradual decrease of respiratory sinus arrhythmia.

References

[1]  Cohen MA, Taylor JA (2002) Short-term cardiovascular oscillations in man: measuring and modelling the physiologies. J Physiol 542: 669–683. doi: 10.1113/jphysiol.2002.017483
[2]  Koepchen HP (1991) Physiology of rhythms and control systems: an integrative approach. In: Rhythms in physiological systems, edited by Haken H, Koepchen HP. Berlin: Springer-Verlag, 3–20.
[3]  Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology. Standard of measurement, physiological interpretation and clinical use (1996) Circulation. 93: 1043–1065. doi: 10.1111/j.1542-474x.1996.tb00275.x
[4]  Kaplan DT, Furman MI, Pincus SM, Ryan SM, Lipsitz LA, et al. (1991) Aging and the complexity of cardiovascular dynamics. Biophys J 59: 945–949. doi: 10.1016/s0006-3495(91)82309-8
[5]  Lipsitz LA (1999) Age-related changes in the “complexity” of cardiovascular dynamics: a potential marker of vulnerability in disease. Chaos 5: 102–109. doi: 10.1063/1.166091
[6]  Pikkujamsa SM, Makikallio TH, Sourander LB, Raiha IJ, Puukka P, et al. (1999) Cardiac interbeat interval dynamics from Childhood to Senescence. Comparison of conventional and new measures based on fractals and chaos theory. Circulation 100: 393–399. doi: 10.1161/01.cir.100.4.393
[7]  Takahashi ACM, Porta A, Melo RC, Quiterio RJ, da Silva E, el al (2012) Aging reduces complexity of heart rate variability assessed by conditional entropy and symbolic analysis. Intern Emerg Med 7: 229–235. doi: 10.1007/s11739-011-0512-z
[8]  Beckers F, Verheyden B, Aubert AE (2006) Aging and nonlinear heart rate control in a healthy population. Am J Physiol 290: H2560–H2570. doi: 10.1152/ajpheart.00903.2005
[9]  Viola AU, Tobaldini E, Chellappa SL, Casali KR, Porta A, et al. (2011) Short-term complexity of cardiac autonomic control during sleep: REM as a potential risk factor for cardiovascular system in aging. PLoS ONE 6: e19002. doi: 10.1371/journal.pone.0019002
[10]  Goldberger AL, Amaral LAN, Hausdorff JM, Ivanov PCh, Peng C-K, et al. (2002) Fractal dynamics in physiology: alterations with disease and aging. Proc Natl Acad Sci 99: 2466–2473. doi: 10.1073/pnas.012579499
[11]  Porta A, Castiglioni P, di Rienzo M, Bari V, Bassani T, et al. (2012) Short-term complexity indexes of heart period and systolic arterial pressure variabilities provide complementary information. J Appl Physiol 113: 1810–1820. doi: 10.1152/japplphysiol.00755.2012
[12]  Granger CWJ (1980) Testing for causality. A personal viewpoint. J Econ Dyn Control 2: 329–352.
[13]  Chen Y, Rangarajan G, Feng J, Ding M (2004) Analyzing multiple nonlinear time series with extended Granger causality. Phys Lett A 324: 26–35. doi: 10.1016/j.physleta.2004.02.032
[14]  Faes L, Nollo G, Porta A (2011) Information-based detection of nonlinear Granger causality in multivariate processes via a nonuniform embedding technique. Phys Rev E 83: 051112. doi: 10.1103/physreve.83.051112
[15]  Porta A, Castiglioni P, di Rienzo M, Bassani T, Bari V, et al. (2013) Cardiovascular control and time domain Granger causality: insights from selective autonomic blockade. Phil Trans R Soc A 371: 20120161. doi: 10.1098/rsta.2012.0161
[16]  Vicente R, Wibral M, Lindner M, Pipa G (2011) Transfer entropy - a model-free measure of effective connectivity for the neurosciences. J Comput Neurosci 30: 45–67. doi: 10.1007/s10827-010-0262-3
[17]  Porta A, Faes L (2013) Assessing causality in brain dynamics and cardiovascular control. Phil Trans R Soc A 371: 20120517. doi: 10.1098/rsta.2012.0517
[18]  Baselli G, Cerutti S, Badilini F, Biancardi L, Porta A, et al. (1994) Model for the assessment of heart period and arterial pressure variability interactions and respiratory influences. Med Biol Eng Comput 32: 143–152. doi: 10.1007/bf02518911
[19]  Porta A, Baselli G, Rimoldi O, Malliani A, Pagani M (2000) Assessing baroreflex gain from spontaneous variability in conscious dogs: role of causality and respiration. Am J Physiol 279: H2558–H2567.
[20]  Mullen TJ, Appel ML, Mukkamala R, Mathias JM, Cohen RJ (1997) System identification of closed loop cardiovascular control: effects of posture and autonomic blockade. Am J Physiol 272: H448–H461.
[21]  Triedman JK, Perrott MH, Cohen RJ, Saul JP (1995) Respiratory sinus arrhythmia: time domain characterization using autoregressive moving average analysis. Am J Physiol 268: H2232–H2238.
[22]  Eckberg DL (2003) The human respiratory gate. J Physiol 548: 339–352. doi: 10.1113/jphysiol.2003.037192
[23]  Porta A, Bassani T, Bari V, Tobaldini E, Takahashi ACM, et al. (2012) Model-based assessment of baroreflex and cardiopulmonary couplings during graded head-up tilt. Comput Biol Med 42: 298–305. doi: 10.1016/j.compbiomed.2011.04.019
[24]  Porta A, Gnecchi-Ruscone T, Tobaldini E, Guzzetti S, Furlan R, et al. (2007) Progressive decrease of heart period variability entropy-based complexity during graded head-up tilt. J Appl Physiol 103: 1143–1149. doi: 10.1152/japplphysiol.00293.2007
[25]  Soderstrom T, Stoica P (1988) System identification. Englewood Cliffs: Prentice Hall.
[26]  Akaike H (1974) A new look at the statistical novel identification. IEEE Trans Autom Contr 19: 716–723. doi: 10.1109/tac.1974.1100705
[27]  Abarbanel HDI, Carroll TL, Pecora LM, Sidorowich JJ, Tsimring LS (1994) Predicting physical variables in time-delay embedding. Phys Rev E 49: 1840–1853. doi: 10.1103/physreve.49.1840
[28]  Theiler J (1986) Spurious dimension from correlation algorithms applied to limited time-series data. Phys Rev A 34: 2427–2432. doi: 10.1103/physreva.34.2427
[29]  Sugihara G, May RM (1990) Non linear forecasting as a way of distinguishing chaos from measurement error in time series. Nature 344: 734–741. doi: 10.1038/344734a0
[30]  Pincus SM (1995) Approximate entropy (ApEn) as a complexity measure. Chaos 5: 110–117. doi: 10.1063/1.166092
[31]  Porta A, Guzzetti S, Furlan R, Gnecchi-Ruscone T, Montano N, et al. (2007) Complexity and non linearity in short-term heart period variability: comparison of methods based on local non linear prediction. IEEE Trans Biomed Eng 54: 94–106. doi: 10.1109/tbme.2006.883789
[32]  Vlachos I, Kugiumtzis D (2010) Nonuniform state-space reconstruction and coupling direction. Phys Rev E 82: 016207. doi: 10.1103/physreve.82.016207
[33]  Porta A, Guzzetti S, Montano N, Pagani M, Somers VK, et al. (2000) Information domain analysis of cardiovascular variability signals: evaluation of regularity, synchronisation and co-ordination. Med Biol Eng Comput 38: 180–188. doi: 10.1007/bf02344774
[34]  Porta A, Castiglioni P, Bari V, Bassani T, Marchi A, et al. (2013) K-nearest-neighbor conditional entropy approach for the assessment of short-term complexity of cardiovascular control. Physiol Meas 34: 17–33. doi: 10.1088/0967-3334/34/1/17
[35]  Schreiber T (2000) Measuring information transfer. Phys Rev Lett 85: 461–464. doi: 10.1103/physrevlett.85.461
[36]  Barnett SR, Morin RJ, Kiely DK, Gagnon M, Azhar G, et al. (1999) Effects of age and gender on autonomic control of blood pressure dynamics. Hypertension 33: 1195–1200. doi: 10.1161/01.hyp.33.5.1195
[37]  Balady GM, Arena R, Sietsema K, Myers J, Coke L, et al. (2010) Clinician’s Guide to cardiopulmonary exercise testing in adults: a scientific statement from the American Heart Association. Circulation 122: 191–225. doi: 10.1161/cir.0b013e3181e52e69
[38]  Neves LTM, Karsten M, Neves VR, Bertrame T, Borghi-Silva A, et al. (2011) Relationship between inspiratory muscle capacity and peak exercise tolerance in patients post-myocardial infarction. Heart Lung 41: 137–145. doi: 10.1016/j.hrtlng.2011.07.010
[39]  Bertinieri G, di Rienzo M, Cavallazzi A, Ferrari AU, Pedotti A, et al. (1985) A new approach to analysis of the arterial baroreflex. J Hypertens 3: S79–S81.
[40]  di Rienzo M, Parati G, Castiglioni P, Tordi R, Mancia G, et al. (2001) Baroreflex effectiveness index: an additional measure of baroreflex control of heart rate in daily life. Am J Physiol 280: R744–R751.
[41]  Porta A, Bassani T, Bari V, Pinna GD, Maestri R, et al. (2012) Accounting for respiration is necessary to reliably infer Granger causality from cardiovascular variability series. IEEE Trans Biomed Eng 59: 832–841. doi: 10.1109/tbme.2011.2180379
[42]  Eckberg DL (1976) Temporal response patterns of the human sinus node to brief carotid baroreceptor stimuli. J Physiol 258: 769–782.
[43]  Saul JP, Berger RD, Albrecht P, Stein SP, Chen MH, et al. (1991) Transfer function analysis of the circulation: unique insights into cardiovascular regulation. Am J Physiol 261: H1231–H1245.
[44]  Richman JS, Moorman JR (2000) Physiological time-series analysis using approximate entropy and sample entropy. Am J Physiol 278: H2039–H2049.
[45]  Porta A, Baselli G, Liberati D, Montano N, Cogliati C, et al. (1998) Measuring regularity by means of a corrected conditional entropy in sympathetic outflow. Biol Cybern 78: 71–78. doi: 10.1007/s004220050414
[46]  Farmer JD, Sidorowich JJ (1987) Predicting chaotic time series. Phys Rev Lett 59: 845–848. doi: 10.1103/physrevlett.59.845
[47]  Porta A, Baselli G, Guzzetti S, Pagani M, Malliani A, et al. (2000) Prediction of short cardiovascular variability signals based on conditional distribution. IEEE Trans Biomed Eng 47: 1555–1564. doi: 10.1109/10.887936
[48]  Hlavackova-Schindler K, Palus M, Vejmelka M, Bhattacharya J (2007) Causality detection based on information-theoretic approaches in time series analysis. Phys Rep 441: 1–46. doi: 10.1016/j.physrep.2006.12.004
[49]  Nemati S, Edwards BA, Lee J, Pittman-Polletta B, Butler JP, et al. (2013) Respiration and heart rate complexity: effects of age and gender assessed by band-limited transfer entropy. Resp Physiol Neurobi 189: 27–33. doi: 10.1016/j.resp.2013.06.016
[50]  Uddin Ahmed M, Mandic DP (2012) Multivariate multiscale entropy analysis. IEEE Signal Proc Lett 19: 91–94. doi: 10.1109/lsp.2011.2180713
[51]  Xiao X, Mullen TJ, Mukkamala R (2005) System identification: a multi-signal approach for probing neural cardiovascular regulation. Physiol Meas 26: R41–R71. doi: 10.1088/0967-3334/26/3/r01
[52]  Porta A, Aletti F, Vallais F, Baselli G (2009) Multimodal signal processing for the analysis of cardiovascular variability. Phil Trans R Soc A 367: 391–408. doi: 10.1098/rsta.2008.0229
[53]  Blinowska KJ (2011) Review of the methods of determination of directed connectivity from multichannel data. Med Biol Eng Comput 49: 512–529. doi: 10.1007/s11517-011-0739-x
[54]  Schelter B, Timmer J, Eichler M (2009) Assessing the strength of directed influences among neural signals using renormalized partial directed coherence. J Neurosci Methods 179: 121–130. doi: 10.1016/j.jneumeth.2009.01.006
[55]  Takahashi DY, Baccalà L, Sameshima K (2007) Connectivity inference between neural structures via partial directed coherence. J Appl Stat 34: 1259–1273. doi: 10.1080/02664760701593065
[56]  Borst C, Karemaker JM (1983) Time delays in the human baroreceptor reflex. J Auton Nerv Syst 9: 399–409. doi: 10.1016/0165-1838(83)90004-8
[57]  Fraser AM, Swinney HL (1986) Independent coordinates from strange attractors from mutual information. Phys Rev A 33: 1134–1140. doi: 10.1103/physreva.33.1134
[58]  Runge J, Heitzig J, Petoukhov V, Kurths J (2012) Escaping the curse of dimensionality in estimating multivariate transfer entropy. Phys Rev Lett 108: 258701. doi: 10.1103/physrevlett.108.258701
[59]  Seals DR, Esler MD (2000) Human ageing and sympathoadrenal system. J Physiol 528: 407–417. doi: 10.1111/j.1469-7793.2000.00407.x
[60]  Parker Jones P, Christou DD, Jordan J, Seals DR (2003) Baroreflex buffering is reduced with age in healthy men. Circulation 107: 1770–1774. doi: 10.1161/01.cir.0000057811.86187.88
[61]  Baselli G, Porta A, Pagani M (2006) Coupling arterial windkessel with peripheral vasomotion: modeling the effects on low-frequency oscillations. IEEE Trans Biomed Eng 53: 53–64. doi: 10.1109/tbme.2005.859787
[62]  Gilbey MP, Jordan D, Richter DW, Spyer KM (1984) Synaptic mechanisms involved in the inspiratory modulation of vagal cardio-inhibitory neurones in the cat. J Physiol 356: 65–78.
[63]  Porta A, Catai AM, Takahashi ACM, Magagnin V, Bassani T, el al (2011) Causal relationships between heart period and systolic arterial pressure during graded head-up tilt. Am J Physiol 300: R378–R386. doi: 10.1152/ajpregu.00553.2010
[64]  Nollo G, Faes L, Porta A, Pellegrini B, Ravelli F, et al. (2002) Evidence of unbalanced regulatory mechanism of heart rate and systolic pressure after acute myocardial infarction. Am J Physiol 283: H1200–H1207.
[65]  Laitinen T, Niskamen L, Geelen G, Lansimies E, Hartikainen J (2004) Age dependency of cardiovascular autonomic responses to head-up tilt in healthy subjects. J Appl Physiol 96: 2333–2340. doi: 10.1152/japplphysiol.00444.2003
[66]  O’Brien IAD, O’Hare P, Corrall RJM (1986) Heart rate variability in healthy subjects: effect of age and the derivation of normal ranges for tests of autonomic function. British Heart Journal 55: 348–354. doi: 10.1136/hrt.55.4.348
[67]  Laitinen T, Hartikainen J, Niskamen L, Geelen G, Lansimies E (1999) Sympathovagal balance is major determinant of short-term blood pressure variability in healthy subjects. Am J Physiol 276: H1245–H1252.
[68]  Larson ED, St ClairJR, Summer WA, Bannister RA, Proenza C (2013) Depressed pacemaker activity of sinoatrial node myocytes contributes to the age-dependent decline in maximum heart rate. Proc Natl Acad Sci 110: 18011–18016.
[69]  Ziegler MG, Lake CR, Kopin IJ (1976) Plasma noradrenaline increases with age. Nature 261: 333–334. doi: 10.1038/261333a0
[70]  Hrushesky WJM, Fader D, Schmitt O, Gilberstsen V (1984) The respiratory sinus arrhythmia: a measure of cardiac age. Science 224: 1001–1004. doi: 10.1126/science.6372092
[71]  Kelly J, O’Malley K (1984) Adrenoceptor function and ageing. Clin Sci 66: 509–515.
[72]  Lakatta EG (1993) Cardiovascular regulatory mechanisms in advanced age. Physiol Rev 73: 413–465.
[73]  Veermann DP, Imholz BPM, Wieling W, Karemaker JM, van Mortfrans GA (1994) Effects of aging on blood pressure variability in resting conditions. Hypertension 24: 120–130. doi: 10.1161/01.hyp.24.1.120
[74]  Esler MD, Thompson JM, Kaye DM, Turner AG, Jennings GL, et al. (1995) Effects of aging on the responsiveness of the human cardiac sympathetic nerves to stressors. Circulation 91: 351–358. doi: 10.1161/01.cir.91.2.351
[75]  Elliott HL, Summer DJ, McLean K, Reid JL (1982) Effect of age on the responsiveness of vascular alpha-adrenoceptors in man. J Cardiovasc Pharmacol 4: 388–392. doi: 10.1097/00005344-198205000-00008
[76]  Turianikova Z, Javorka K, Baumert M, Calkovska A, Javorka M (2011) The effect of orthostatic stress on multiscale entropy of heart rate and blood pressure. Physiol Meas 32: 1425–1437. doi: 10.1088/0967-3334/32/9/006
[77]  Cooke WH, Hoag JB, Crossman AA, Kuusela TA, Tahvanainen KUO, et al. (1999) Human responses to upright tilt: a window on central autonomic integration. J Physiol 517: 617–628. doi: 10.1111/j.1469-7793.1999.0617t.x
[78]  Furlan R, Porta A, Costa F, Tank J, Baker L, et al. (2000) Oscillatory patterns in sympathetic neural discharge and cardiovascular variables during orthostatic stimulus. Circulation 101: 886–892. doi: 10.1161/01.cir.101.8.886
[79]  Javorka M, Trunkvalterova Z, Tonhajzerova I, Javorkova J, Javorka K, et al. (2008) Short-term heart rate complexity is reduced in patients with type 1 diabetes mellitus. Clin Neurophysiol 119: 1071–1081. doi: 10.1016/j.clinph.2007.12.017
[80]  Rodeheffer RJ, Gerstenblith G, Becker LC, Fleg JL, Weisfeldt ML, et al. (1984) Exercise cardiac output is maintained with advancing age in healthy human subjects: cardiac dilatation and increased stroke volume compensate for a diminished heart rate. Circulation 69: 203–213. doi: 10.1161/01.cir.69.2.203
[81]  Laitinen T, Hartikainen J, Vanninen E, Niskamen L, Geelen G, et al. (1998) Age and gender dependency of baroreflex sensitivity in healthy subjects. J Appl Physiol 84: 576–583.
[82]  Porta A, Takahashi ACM, Catai AM, Montano N (2013) Assessing causal interactions among cardiovascular variability series through a time domain Granger causality approach. In: Methods in brain connectivity inference through multivariate time series analysis, edited by Baccalà L and Sameshima K. Boca Raton Ann Arbor London Tokyo: CRC Press, 223–242.
[83]  Lakatta EG, Levy D (2003) Arterial and cardiac aging: major shareholders in cardiovascular disease enterprises. Part II: the aging heart in health: links to heart disease. Circulation 107: 346–354. doi: 10.1161/01.cir.0000048893.62841.f7
[84]  Iatsenko D, Bernjak A, Stankovski T, Shiogai Y, Owen-Lynch PJ, et al. (2013) Evolution of cardiorespiratory interactions with age. Phil Trans R Soc A 371: 20110622. doi: 10.1098/rsta.2011.0622
[85]  Caiani E, Turiel M, Muzzupappa S, Porta A, Baselli G, et al. (2000) Evaluation of respiratory influences on left ventricular function parameters extracted from echocardiographic acoustic quantification. Physiol Meas 21: 175–186. doi: 10.1088/0967-3334/21/1/321
[86]  Innes J, De Cort S, Kox W, Guz A (1993) Within-breath modulation of left ventricular function during normal breathing and positive-pressure ventilation in man. J Physiol 460: 487–502.
[87]  Toska K, Eriksen M (1993) Respiration-synchronous fluctuations in stroke volume, heart rate and arterial pressure in humans. J Physiol 472: 501–512.
[88]  Lakatta EG, Levy D (2003) Arterial and cardiac aging: major shareholders in cardiovascular disease enterprises. Part I: aging arteries: a “set up” for vascular disease. Circulation 107: 139–146. doi: 10.1161/01.cir.0000048892.83521.58
[89]  Yana K, Saul JP, Berger RD, Perrott MH, Cohen RJ (1993) A time domain approach for the fluctuation analysis of heart rate related to instantaneous lung volume. IEEE Trans Biomed Eng 40: 74–81. doi: 10.1109/10.204773
[90]  Eichler M (2013) Causal inference with multiple time series: principles and problems. Phil Trans R Soc A 371: 20110613. doi: 10.1098/rsta.2011.0613
[91]  Riedl M, Muller A, Wessel N (2013) Practical considerations of permutation entropy. Eur Physl J Special Topics 222: 249–262. doi: 10.1140/epjst/e2013-01862-7

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133