Background Antimalarial drugs may impact mosquito’s defense against Plasmodium parasites. Our previous study showed nitroquine significantly reduced infection of Anopheles stephensi by Plasmodium yoelii, but the underlying mechanism remains unclear. In order to understand how transmission capacity of An. stephensi was affected by nitroquine, we explored the transcriptome of adult females after different treatments, examined changes in gene expression profiles, and identified transcripts affected by the drug and parasite. Methodology/Principal Findings We extended massively parallel sequencing and data analysis (including gene discovery, expression profiling, and function prediction) to An. stephensi before and after Plasmodium infection with or without nitroquine treatment. Using numbers of reads assembled into specific contigs to calculate relative abundances (RAs), we categorized the assembled contigs into four groups according to the differences in RA values infection induced, infection suppressed, drug induced, and drug suppressed. We found both nitroquine in the blood meal and Plasmodium infection altered transcription of mosquito genes implicated in diverse processes, including pathogen recognition, signal transduction, prophenoloxidase activation, cytoskeleton assembling, cell adhesion, and oxidative stress. The differential gene expression may have promoted certain defense responses of An. stephensi against the parasite and decreased its infectivity. Conclusions/Significance Our study indicated that nitroquine may regulate several immune mechanisms at the level of gene transcription in the mosquito against Plasmodium infection. This highlights the need for better understanding of antimalarial drug’s impact on parasite survival and transmission. In addition, our data largely enriched the existing sequence information of An. stephensi, an epidemiologically important vector species.
References
[1]
Mendes AM, Schlegelmilch T, Cohuet A, Awono-Ambene P, De Iorio M, et al. (2008) Conserved mosquito/parasite interactions affect development of Plasmodium falciparum in Africa. PLoS Pathog 4(5): e1000069. doi: 10.1371/journal.ppat.1000069
[2]
Blandin S, Shiao SH, Moita LF, Janse CJ, Waters AP, et al. (2004) Complement-like protein TEP1 is a determinant of vectorial capacity in the malaria vector Anopheles gambiae. Cell 116: 661–70. doi: 10.1016/s0092-8674(04)00173-4
[3]
Hillyer JF, Barreau C, Vernick KD (2007) Efficiency of salivary gland invasion by malaria sporozoites is controlled by rapid sporozoite destruction in the mosquito hemocoel. Int J Parasitol 37: 673–81. doi: 10.1016/j.ijpara.2006.12.007
[4]
Sinden RE, Billingsley PF (2001) Plasmodium invasion of mosquito cells: hawk or dove? Trends Parasitol 17: 209–12. doi: 10.1016/s1471-4922(01)01928-6
[5]
Michel K, Kafatos FC (2005) Mosquito immunity against Plasmodium. Insect Biochem Mol Biol 35: 677–89. doi: 10.1016/j.ibmb.2005.02.009
[6]
Vlachou D, Schlegelmilch T, Christophides GK, Kafatos FC (2005) Functional genomic analysis of midgut epithelial responses in Anopheles during Plasmodium invasion. Curr Biol 15: 1185–95. doi: 10.1016/j.cub.2005.06.044
[7]
Thompson PE, Bayles A, Olszewski B (1970) Antimalarial activity of 2,4-diamino-6-[(3,4- dichlorobenzyl)nitrosamino]quinazoline (Cl-679 base) and Cl-679 acetate. Laboratory studies in mice and rhesus monkeys. Am J Trop Med Hyg 19: 12–26.
[8]
Group 523 in the Military Medical University (1979) The introduction of new antimalaria drug nitroquine. Acta Acadiemiae Midicinae Militaris Tertiae 4: 1.
[9]
Chen XH, Hu YM, Liao YQ, Ke JX, Zhang WJ (1998) Effects of nitroquine on ultrastructures and cytochrome oxidase of exoerythrotic Plasmodium yoelii in rat liver. Acta Pharmacol Sin 19: 390–393.
[10]
Pang LH, Hu YM (1988) Effect of nitroquine (CI-679) in vitro on incorporation of [3H] hypoxanthine into DNA and RNA of Plasmodium yoelii. Acta Pharmacol Sin 9: 349–352.
[11]
Zhou SW, Hu YM (1991) Effect of nitroquine on protein synthesis of Plasmodium yoelii in vitro. Acta Pharmacol Sin 12: 372–375.
[12]
Abrantes P, Dimopoulos G, Grosso AR, do Rosário VE, Silveira H (2008) Chloroquine-mediated modulation of Anopheles gambiae gene expression. PLoS One 3: e2587. doi: 10.1371/journal.pone.0002587
[13]
Zhang J, Huang FS, Xu WY, Song P, Duan JH, et al. (2008) Plasmodium yoelii: correlation of up-regulated prophenoloxidase and phenoloxidases with melanization induced by the antimalarial, nitroquine. Exp Parasitol 118: 308–14. doi: 10.1016/j.exppara.2007.08.017
[14]
Oshaghi MA, Yaaghoobi F, Abaie MR (2006) Pattern of mitochondrial DNA variation between and within Anopheles stephensi (Diptera: Culicidae) biological forms suggests extensive gene flow. Acta Trop 99: 226–33. doi: 10.1016/j.actatropica.2006.08.005
[15]
Dash AP, Adak T, Raghavendra K, Singh OP (2007) The biology and control of malaria vectors in India. Curr Sci 92: 1571–8.
[16]
Chatterjee P (2006) India faces new challenges in the fight against malaria. Lancet Infect Dis 6: 324. doi: 10.1016/s1473-3099(06)70476-5
[17]
Patil DP, Atanur S, Dhotre DP, Anantharam D, Mahajan VS, et al. (2009) Generation, annotation, and analysis of ESTs from midgut tissue of adult female Anopheles stephensi mosquitoes. BMC Genomics 10: 386. doi: 10.1186/1471-2164-10-386
[18]
Zhang S, Gunaratna RT, Zhang X, Najar F, Wang Y, et al. (2011) Pyrosequencing-based expression profiling and identification of differentially regulated genes from Manduca sexta, a lepidopteran model insect. Insect Biochem Mol Biol 41: 733–46. doi: 10.1016/j.ibmb.2011.05.005
[19]
Crawford JE, Guelbeogo WM, Sanou A, Traoré A, Vernick KD, et al. (2010) De novo transcriptome sequencing in Anopheles funestus using Illumina RNA-Seq technology. PLoS One 5: e14202. doi: 10.1371/journal.pone.0014202
[20]
Zerbino DR, Birney E (2008) Velvet: algorithms for de novo short read assembly using de Bruijn graphs. Genome Res 18: 821–9. doi: 10.1101/gr.074492.107
[21]
Li W, Godzik A (2006) Cd-hit: a fast program for clustering and comparing large sets of protein or nucleotide sequences. Bioinformatics 22: 1658–9. doi: 10.1093/bioinformatics/btl158
[22]
Povelones M, Upton LM, Sala KA, Christophides GK (2011) Structure-function analysis of the Anopheles gambiae LRIM1/APL1C complex and its interaction with complement C3-like protein TEP1. PLoS Pathog 7: e1002023. doi: 10.1371/journal.ppat.1002023
[23]
Rottschaefer SM, Riehle MM, Coulibaly B, Sacko M, Niaré O, et al. (2011) Exceptional diversity, maintenance of polymorphism, and recent directional selection on the APL1 malaria resistance genes of Anopheles gambiae. PLoS Biol 9: e1000600. doi: 10.1371/journal.pbio.1000600
[24]
Baxter RH, Steinert S, Chelliah Y, Volohonsky G, Levashina EA, et al. (2010) A heterodimeric complex of the LRR proteins LRIM1 and APL1C regulates complement-like immunity in Anopheles gambiae. Proc Natl Acad Sci USA 107: 16817–22. doi: 10.1073/pnas.1010575107
[25]
González-Lázaro M, Dinglasan RR, Hernández-Hernández Fde L, Rodríguez MH, Laclaustra M, et al. (2009) Anopheles gambiae Croquemort SCRBQ2, expression profile in the mosquito and its potential interaction with the malaria parasite Plasmodium berghei. Insect Biochem Mol Biol 39: 395–402. doi: 10.1016/j.ibmb.2009.03.008
[26]
Nichols Z, Vogt RG (2008) The SNMP/CD36 gene family in Diptera, Hymenoptera and Coleoptera: Drosophila melanogaster, D. pseudoobscura, Anopheles gambiae, Aedes aegypti, Apis mellifera, and Tribolium castaneum. Insect Biochem Mol Biol 38: 398–415. doi: 10.1016/j.ibmb.2007.11.003
[27]
Osta MA, Christophides GK, Vlachou D, Kafatos FC (2004) Innate immunity in the malaria vector Anopheles gambiae: comparative and functional genomics. J Exp Biol 207: 2551–63. doi: 10.1242/jeb.01066
[28]
Zdobnov EM, von Mering C, Letunic I, Torrents D, Suyama M, et al. (2002) Comparative genome and proteome analysis of Anopheles gambiae and Drosophila melanogaster. Science 298: 149–59. doi: 10.1126/science.1077061
[29]
Volz J, Muller HM, Zdanowicz A, Kafatos FC, Osta MA (2006) A genetic module regulates the melanization response of Anopheles to Plasmodium. Cell Microbiol 8: 1392–405. doi: 10.1111/j.1462-5822.2006.00718.x
[30]
Dong Y, Aguilar R, Xi Z, Warr E, Mongin E, et al. (2006) Anopheles gambiae immune responses to human and rodent Plasmodium parasite species. PLoS Pathog 2: e52. doi: 10.1371/journal.ppat.0020052
[31]
Paskewitz SM, Andreev O, Shi L (2006) Gene silencing of serine proteases affects melanization of Sephadex beads in Anopheles gambiae. Insect Biochem Mol Biol 36: 701–11. doi: 10.1016/j.ibmb.2006.06.001
[32]
Ligoxygakis P, Pelte N, Hoffmann JA, Reichhart JM (2002) Activation of Drosophila Toll during fungal infection by a blood serine protease. Science 297: 114–6. doi: 10.1126/science.1072391
[33]
Huang Y, Li YR, An L, Hui KM, Ren Q, et al. (2013) Cloning and characterization of a clip domain serine protease and its homolog (masquerade) from Eriocheir sinensis. Fish Shellfish Immunol 35(4): 1155–62. doi: 10.1016/j.fsi.2013.07.025
[34]
Kanost MR, Jiang H, Wang Y, Yu XQ, Ma C, et al. (2001) Hemolymph proteinases in immune responses of Manduca sexta. Adv Exp Med Biol 484: 319–28. doi: 10.1007/978-1-4615-1291-2_32
[35]
Barillas-Mury C (2007) CLIP proteases and Plasmodium melanization in Anopheles gambiae. Trends Parasitol 23: 297–9. doi: 10.1016/j.pt.2007.05.001
[36]
Mwangi S, Murungi E, Jonas M, Christoffels A (2011) Evolutionary genomics of Glossina morsitans immune-related CLIP domain serine proteases and serine protease inhibitors. Infect Genet Evol 11: 740–5. doi: 10.1016/j.meegid.2010.10.006
[37]
Kanost MR (1999) Serine proteinase inhibitors in arthropod immunity. Dev Comp Immunol 23: 291–301. doi: 10.1016/s0145-305x(99)00012-9
[38]
Meister S, Kanzok SM, Zheng XL, Luna C, Li TR, et al. (2005) Immune signaling pathways regulating bacterial and malaria parasite infection of the mosquito Anopheles gambiae. Proc Natl Acad Sci USA 102: 11420–5. doi: 10.1073/pnas.0504950102
[39]
Machnicka B, Grochowalska R, Bogus?awska DM, Sikorski AF, Lecomte MC (2012) Spectrin-based skeleton as an actor in cell signaling. Cell Mol Life Sci 69: 191–201. doi: 10.1007/s00018-011-0804-5
[40]
Lefkowitz RJ, Rajagopal K, Whalen EJ (2006) New roles for beta-arrestins in cell signaling: not just for seven-transmembrane receptors. Mol Cell 24: 643–52. doi: 10.1016/j.molcel.2006.11.007
Billings PC, Whitbeck JC, Adams CS, Abrams WR, Cohen AJ, et al. (2002) The transforming growth factor-β-inducible matrix protein βig-h3 interacts with fibronectin. J Biol Chem 277: 28003–9. doi: 10.1074/jbc.m106837200
[43]
Weng XH, Piermarini PM, Yamahiro A, Yu MJ, Aneshansley DJ, et al. (2008) Gap junctions in Malpighian tubules of Aedes aegypti. J Exp Biol 211: 409–22. doi: 10.1242/jeb.011213
[44]
Touré F, Fritz G, Li Q, Rai V, Daffu G, et al. (2012) Formin mDia1 mediates vascular remodeling via integration of oxidative and signal transduction pathways. Circ Res 110: 1279–93. doi: 10.1161/circresaha.111.262519
[45]
Fabian L, Xia X, Venkitaramani DV, Johansen KM, Johansen J, et al. (2007) Titin in insect spermatocyte spindle fibers associates with microtubules, actin, myosin and the matrix proteins skeletor, megator and chromator. J Cell Sci 120: 2190–204. doi: 10.1242/jcs.03465
[46]
Padash-Barmchi M, Browne K, Sturgeon K, Jusiak B, Auld VJ (2010) Control of gliotactin localization and levels by tyrosine phosphorylation and endocytosis is necessary for survival of polarized epithelia. J Cell Sci 123: 4052–62. doi: 10.1242/jcs.066605
[47]
Colpitts TM, Cox J, Nguyen A, Feitosa F, Krishnan MN, et al. (2011) Use of a tandem affinity purification assay to detect interactions between West Nile and dengue viral proteins and proteins of the mosquito vector. Virol 417: 179–87. doi: 10.1016/j.virol.2011.06.002
[48]
R?per K, Brown NH (2003) Maintaining epithelial integrity: a function for gigantic spectraplakin isoforms in adherens junctions. J Cell Biol 162: 1305–15. doi: 10.1083/jcb.200307089
[49]
Christophides GK, Zdobnov E, Barillas-Mury C, Birney E, Blandin S, et al. (2002) Immunity-related genes and gene families in Anopheles gambiae. Science 298: 159–65. doi: 10.1126/science.1077136
[50]
Dong Y, Dimopoulos G (2009) Anopheles fibrinogen-related proteins provide expanded pattern recognition capacity against bacteria and malaria parasites. J Biol Chem 284: 9835–44. doi: 10.1074/jbc.m807084200
[51]
Chung YS, Kocks C (2011) Recognition of pathogenic microbes by the Drosophila phagocytic pattern recognition receptor Eater. J Biol Chem 286: 26524–32. doi: 10.1074/jbc.m110.214007
[52]
Gorman MJ, Wang Y, Jiang H, Kanost MR (2007) Manduca sexta hemolymph proteinase 21 activates prophenoloxidase-activating proteinase 3 in an insect innate immune response proteinase cascade. J Biol Chem 282: 11742–9. doi: 10.1074/jbc.m611243200
[53]
Levashina EA, Moita LF, Blandin S, Vriend G, Lagueux M, et al. (2001) Conserved roleof a complement-like protein in phagocytosis revealed by dsRNA knockout in cultured cells of the mosquito, Anopheles gambiae. Cell 104: 709–18. doi: 10.1016/s0092-8674(01)00267-7
[54]
Bou Aoun R, Hetru C, Troxler L, Doucet D, Ferrandon D, et al. (2011) Analysis of thioester-containing proteins during the innate immune response of Drosophila melanogaster. J Innate Imm 3: 52–64. doi: 10.1159/000321554
[55]
Christensen BM, Li J, Chen CC, Nappi AJ (2005) Melanization immune responses in mosquito vectors. Trends Parasitol 21: 192–9. doi: 10.1016/j.pt.2005.02.007
Molina CA, DeJong RJ, Charles B, Gupta L, Kumar S, et al. (2008) Reactive oxygen species modulate Anopheles gambiae immunity against bacteria and Plasmodium. J Biol Chem 283: 3217–23. doi: 10.1074/jbc.m705873200
[58]
Oliveira JH, Goncalves RL, Oliveira GA, Oliveira PL, Oliveira MF, et al. (2011) Energy metabolism affects susceptibility of Anopheles gambiae mosquitoes to Plasmodium infection. Insect Biochem Mol Biol 41: 349–55. doi: 10.1016/j.ibmb.2011.02.001
[59]
Papadopoulos AI, Polemitoua I, Laifi P, Yiangoua A, Tananaki C (2004) Glutathione S-transferase in the insect Apis mellifera macedonica kinetic characteristics and effect of stress on the expression of GST isoenzymes in the adult worker bee. Comp Biochem Phys C 139: 93–7. doi: 10.1016/s1532-0456(04)00180-2
[60]
Wu S, Dou W, Wu JJ, Wang JJ (2009) Purification and partial characterization of glutathione S-transferase from insecticide-resistant field populations of Liposcelis paeta Pearman (Psocoptera: Liposcelididae). Arch Insect Biochem Phys 70: 136–50. doi: 10.1002/arch.20285
[61]
Cao TT, Chang W, Masters SE, Mooseker MS (2004) Myosin-Va binds to and mechanochemically couples microtubules to actin filaments. Mol Biol Cell 15: 151–61. doi: 10.1091/mbc.e03-07-0504
[62]
Champagne MB, Edwards KA, Erickson HP, Kiehart DP (2000) Drosophila stretchin-MLCK is a novel member of the titin/myosin light chain kinase family. J Mol Biol 300: 759–77. doi: 10.1006/jmbi.2000.3802
[63]
Dimopoulos G, Seeley D, Wolf A, Kafatos FC (1998) Malaria infection of the mosquito Anopheles gambiae activates immune-responsive genes during critical transition stages of the parasite life cycle. EMBO J 17: 6115–23. doi: 10.1093/emboj/17.21.6115
[64]
Jaramillo-Gutierrez G, Rodrigues J, Ndikuyeze G, Povelones M, Molina-Cruz A, et al. (2009) Mosquito immune responses and compatibility between Plasmodium parasites and anopheline mosquitoes. BMC Microbiol 9: 154. doi: 10.1186/1471-2180-9-154