全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2014 

The Culture of Cancer Cell Lines as Tumorspheres Does Not Systematically Result in Cancer Stem Cell Enrichment

DOI: 10.1371/journal.pone.0089644

Full-Text   Cite this paper   Add to My Lib

Abstract:

Cancer stem cells (CSC) have raised great excitement during the last decade and are promising targets for an efficient treatment of tumors without relapses and metastases. Among the various methods that enable to enrich cancer cell lines in CSC, tumorspheres culture has been predominantly used. In this report, we attempted to generate tumorspheres from several murine and human cancer cell lines: B16-F10, HT-29, MCF-7 and MDA-MB-231 cells. Tumorspheres were obtained with variable efficiencies from all cell lines except from MDA-MB-231 cells. Then, we studied several CSC characteristics in both tumorspheres and adherent cultures of the B16-F10, HT-29 and MCF-7 cells. Unexpectedly, tumorspheres-forming cells were less clonogenic and, in the case of B16-F10, less proliferative than attached cells. In addition, we did not observe any enrichment in the population expressing CSC surface markers in tumorspheres from B16-F10 (CD133, CD44 and CD24 markers) or MCF-7 (CD44 and CD24 markers) cells. On the contrary, tumorspheres culture of HT-29 cells appeared to enrich in cells expressing colon CSC markers, i.e. CD133 and CD44 proteins. For the B16-F10 cell line, when 1 000 cells were injected in syngenic C57BL/6 mice, tumorspheres-forming cells displayed a significantly lower tumorigenic potential than adherent cells. Finally, tumorspheres culture of B16-F10 cells induced a down-regulation of vimentin which could explain, at least partially, the lower tumorigenicity of tumorspheres-forming cells. All these results, along with the literature, indicate that tumorspheres culture of cancer cell lines can induce an enrichment in CSC but in a cell line-dependent manner. In conclusion, extensive characterization of CSC properties in tumorspheres derived from any cancer cell line or cancer tissue must be performed in order to ensure that the generated tumorspheres are actually enriched in CSC.

References

[1]  Alison MR, Lim SM, Nicholson LJ (2011) Cancer stem cells: problems for therapy? J Pathol 223: 147–161. doi: 10.1002/path.2793
[2]  Gil J, Stembalska A, Pesz KA, Sasiadek MM (2008) Cancer stem cells: the theory and perspectives in cancer therapy. J Appl Genet 49: 193–199. doi: 10.1007/bf03195612
[3]  Moore N, Lyle S (2011) Quiescent, slow-cycling stem cell populations in cancer: a review of the evidence and discussion of significance. J Oncol 2011.
[4]  Vincent A, Van Seuningen I (2012) On the epigenetic origin of cancer stem cells. Biochim Biophys Acta 1826: 83–88. doi: 10.1016/j.bbcan.2012.03.009
[5]  Magee JA, Piskounova E, Morrison SJ (2012) Cancer stem cells: impact, heterogeneity, and uncertainty. Cancer Cell 21: 283–296. doi: 10.1016/j.ccr.2012.03.003
[6]  Bonnet D, Dick JE (1997) Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat Med 3: 730–737. doi: 10.1038/nm0797-730
[7]  Schulenburg A, Bramswig K, Herrmann H, Karlic H, Mirkina I, et al. (2010) Neoplastic stem cells: current concepts and clinical perspectives. Crit Rev Oncol Hematol 76: 79–98. doi: 10.1016/j.critrevonc.2010.01.001
[8]  Hollier BG, Evans K, Mani SA (2009) The epithelial-to-mesenchymal transition and cancer stem cells: a coalition against cancer therapies. J Mammary Gland Biol Neoplasia 14: 29–43. doi: 10.1007/s10911-009-9110-3
[9]  Hittelman WN, Liao Y, Wang L, Milas L (2010) Are cancer stem cells radioresistant? Future Oncol 6: 1563–1576. doi: 10.2217/fon.10.121
[10]  Borovski T, De Sousa EMF, Vermeulen L, Medema JP (2011) Cancer stem cell niche: the place to be. Cancer Res 71: 634–639. doi: 10.1158/0008-5472.can-10-3220
[11]  Kong D, Li Y, Wang Z, Sarkar FH (2011) Cancer Stem Cells and Epithelial-to-Mesenchymal Transition (EMT)-Phenotypic Cells: Are They Cousins or Twins? Cancers (Basel) 3: 716–729. doi: 10.3390/cancers30100716
[12]  Sampieri K, Fodde R (2012) Cancer stem cells and metastasis. Semin Cancer Biol 22: 187–193. doi: 10.1016/j.semcancer.2012.03.002
[13]  Dontu G, Abdallah WM, Foley JM, Jackson KW, Clarke MF, et al. (2003) In vitro propagation and transcriptional profiling of human mammary stem/progenitor cells. Genes Dev 17: 1253–1270. doi: 10.1101/gad.1061803
[14]  Ponti D, Costa A, Zaffaroni N, Pratesi G, Petrangolini G, et al. (2005) Isolation and in vitro propagation of tumorigenic breast cancer cells with stem/progenitor cell properties. Cancer Res 65: 5506–5511. doi: 10.1158/0008-5472.can-05-0626
[15]  Kondo T (2007) Stem cell-like cancer cells in cancer cell lines. Cancer Biomark 3: 245–250. doi: 10.2492/inflammregen.27.506
[16]  Dou J, Pan M, Wen P, Li Y, Tang Q, et al. (2007) Isolation and identification of cancer stem-like cells from murine melanoma cell lines. Cell Mol Immunol 4: 467–472.
[17]  Fan X, Ouyang N, Teng H, Yao H (2011) Isolation and characterization of spheroid cells from the HT29 colon cancer cell line. Int J Colorectal Dis 26: 1279–1285. doi: 10.1007/s00384-011-1248-y
[18]  Wu J, Omene C, Karkoszka J, Bosland M, Eckard J, et al. (2011) Caffeic acid phenethyl ester (CAPE), derived from a honeybee product propolis, exhibits a diversity of anti-tumor effects in pre-clinical models of human breast cancer. Cancer Lett 308: 43–53. doi: 10.1016/j.canlet.2011.04.012
[19]  Guttilla IK, Phoenix KN, Hong X, Tirnauer JS, Claffey KP, et al. (2012) Prolonged mammosphere culture of MCF-7 cells induces an EMT and repression of the estrogen receptor by microRNAs. Breast Cancer Res Treat 132: 75–85. doi: 10.1007/s10549-011-1534-y
[20]  Golebiewska A, Brons NH, Bjerkvig R, Niclou SP (2011) Critical appraisal of the side population assay in stem cell and cancer stem cell research. Cell Stem Cell 8: 136–147. doi: 10.1016/j.stem.2011.01.007
[21]  Zhong Y, Guan K, Zhou C, Ma W, Wang D, et al. (2010) Cancer stem cells sustaining the growth of mouse melanoma are not rare. Cancer Lett 292: 17–23. doi: 10.1016/j.canlet.2009.10.021
[22]  Grimshaw MJ, Cooper L, Papazisis K, Coleman JA, Bohnenkamp HR, et al. (2008) Mammosphere culture of metastatic breast cancer cells enriches for tumorigenic breast cancer cells. Breast Cancer Res 10: R52. doi: 10.1186/bcr2106
[23]  Huang MZ, Zhang FC, Zhang YY (2008) [Influence factors on the formation of mammospheres from breast cancer stem cells]. Beijing Da Xue Xue Bao 40: 500–504.
[24]  Prud'homme GJ, Glinka Y, Toulina A, Ace O, Subramaniam V, et al. (2010) Breast cancer stem-like cells are inhibited by a non-toxic aryl hydrocarbon receptor agonist. PLoS One 5: e13831. doi: 10.1371/journal.pone.0013831
[25]  Omene CO, Wu J, Frenkel K (2012) Caffeic Acid Phenethyl Ester (CAPE) derived from propolis, a honeybee product, inhibits growth of breast cancer stem cells. Invest New Drugs 30: 1279–1288. doi: 10.1007/s10637-011-9667-8
[26]  Xie G, Zhan J, Tian Y, Liu Y, Chen Z, et al. (2012) Mammosphere cells from high-passage MCF7 cell line show variable loss of tumorigenicity and radioresistance. Cancer Lett 316: 53–61. doi: 10.1016/j.canlet.2011.10.018
[27]  Chen C, Wei Y, Hummel M, Hoffmann TK, Gross M, et al. (2011) Evidence for epithelial-mesenchymal transition in cancer stem cells of head and neck squamous cell carcinoma. PLoS One 6: e16466. doi: 10.1371/journal.pone.0016466
[28]  Elsaba TM, Martinez-Pomares L, Robins AR, Crook S, Seth R, et al. (2010) The stem cell marker CD133 associates with enhanced colony formation and cell motility in colorectal cancer. PLoS One 5: e10714. doi: 10.1371/journal.pone.0010714
[29]  Shi Z, Bai R, Fu ZX, Zhu YL, Wang RF, et al. (2012) Induced pluripotent stem cell-related genes influence biological behavior and 5-fluorouracil sensitivity of colorectal cancer cells. J Zhejiang Univ Sci B 13: 11–19. doi: 10.1631/jzus.b1100154
[30]  Wei B, Han XY, Qi CL, Zhang S, Zheng ZH, et al. (2012) Coaction of spheroid-derived stem-like cells and endothelial progenitor cells promotes development of colon cancer. PLoS One 7: e39069. doi: 10.1371/journal.pone.0039069
[31]  Wang J, Guo LP, Chen LZ, Zeng YX, Lu SH (2007) Identification of cancer stem cell-like side population cells in human nasopharyngeal carcinoma cell line. Cancer Res 67: 3716–3724. doi: 10.1158/0008-5472.can-06-4343
[32]  Haraguchi N, Ohkuma M, Sakashita H, Matsuzaki S, Tanaka F, et al. (2008) CD133+CD44+ population efficiently enriches colon cancer initiating cells. Ann Surg Oncol 15: 2927–2933. doi: 10.1245/s10434-008-0074-0
[33]  Al-Hajj M, Wicha MS, Benito-Hernandez A, Morrison SJ, Clarke MF (2003) Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci U S A 100: 3983–3988. doi: 10.1073/pnas.0530291100
[34]  Collura A, Marisa L, Trojan D, Buhard O, Lagrange A, et al. (2013) Extensive characterization of sphere models established from colorectal cancer cell lines. Cell Mol Life Sci 70: 729–742. doi: 10.1007/s00018-012-1160-9
[35]  Zhang L, Jiao M, Li L, Wu D, Wu K, et al. (2012) Tumorspheres derived from prostate cancer cells possess chemoresistant and cancer stem cell properties. J Cancer Res Clin Oncol 138: 675–686. doi: 10.1007/s00432-011-1146-2
[36]  Zhao R, Quaroni L, Casson AG (2012) Identification and characterization of stemlike cells in human esophageal adenocarcinoma and normal epithelial cell lines. J Thorac Cardiovasc Surg 144: 1192–1199. doi: 10.1016/j.jtcvs.2012.08.008
[37]  Qiu X, Wang Z, Li Y, Miao Y, Ren Y, et al. (2012) Characterization of sphere-forming cells with stem-like properties from the small cell lung cancer cell line H446. Cancer Lett 323: 161–170. doi: 10.1016/j.canlet.2012.04.004
[38]  Gou S, Liu T, Wang C, Yin T, Li K, et al. (2007) Establishment of clonal colony-forming assay for propagation of pancreatic cancer cells with stem cell properties. Pancreas 34: 429–435. doi: 10.1097/mpa.0b013e318033f9f4
[39]  Zhou HM, Dong TT, Wang LL, Feng B, Zhao HC, et al. (2012) Suppression of colorectal cancer metastasis by nigericin through inhibition of epithelial-mesenchymal transition. World J Gastroenterol 18: 2640–2648. doi: 10.3748/wjg.v18.i21.2640
[40]  Nijkamp MM, Span PN, Hoogsteen IJ, van der Kogel AJ, Kaanders JH, et al. (2011) Expression of E-cadherin and vimentin correlates with metastasis formation in head and neck squamous cell carcinoma patients. Radiother Oncol 99: 344–348. doi: 10.1016/j.radonc.2011.05.066
[41]  Myong NH (2012) Loss of E-cadherin and Acquisition of Vimentin in Epithelial-Mesenchymal Transition are Noble Indicators of Uterine Cervix Cancer Progression. Korean J Pathol 46: 341–348. doi: 10.4132/koreanjpathol.2012.46.4.341
[42]  Hur K, Toiyama Y, Takahashi M, Balaguer F, Nagasaka T, et al. (2013) MicroRNA-200c modulates epithelial-to-mesenchymal transition (EMT) in human colorectal cancer metastasis. Gut 62: 1315–1326. doi: 10.1136/gutjnl-2011-301846
[43]  Pollard SM, Yoshikawa K, Clarke ID, Danovi D, Stricker S, et al. (2009) Glioma stem cell lines expanded in adherent culture have tumor-specific phenotypes and are suitable for chemical and genetic screens. Cell Stem Cell 4: 568–580. doi: 10.1016/j.stem.2009.03.014
[44]  Rols MP, Delteil C, Golzio M, Dumond P, Cros S, et al. (1998) In vivo electrically mediated protein and gene transfer in murine melanoma. Nat Biotechnol 16: 168–171. doi: 10.1038/nbt0298-168
[45]  Mir LM, Moller PH, Andre F, Gehl J (2005) Electric pulse-mediated gene delivery to various animal tissues. Adv Genet 54: 83–114. doi: 10.1016/s0065-2660(05)54005-7
[46]  Mesojednik S, Pavlin D, Sersa G, Coer A, Kranjc S, et al. (2007) The effect of the histological properties of tumors on transfection efficiency of electrically assisted gene delivery to solid tumors in mice. Gene Ther 14: 1261–1269. doi: 10.1038/sj.gt.3302989

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133