In bacteria, RNA-binding proteins of the RsmA/CsrA family act as post-transcriptional regulators that modulate translation initiation at target transcripts. The Pseudomonas aeruginosa genome contains two phenazine biosynthetic (phz) gene clusters, phzA1-G1 (phz1) and phzA2-G2 (phz2), each of which is responsible for phenazine-1-carboxylic acid (PCA) biosynthesis. In the present study, we show that RsmA exhibits differential gene regulation on two phz clusters in P. aeruginosa M18 at the post-transcriptional level. Based on the sequence analysis, four GGA motifs, the potential RsmA binding sites, are found on the 5′-untranslated region (UTR) of the phz2 transcript. Studies with a series of lacZ reporter fusions, and gel mobility shift assays suggest that the third GGA motif (S3), located 21 nucleotides upstream of the Shine-Dalgarno (SD) sequence, is involved in direct RsmA-mediated activation of phz2 expression. We therefore propose a novel model in which the binding of RsmA to the target S3 results in the destabilization of the stem-loop structure and the enhancement of ribosome access. This model could be fully supported by RNA structure prediction, free energy calculations, and nucleotide replacement studies. In contrast, various RsmA-mediated translation repression mechanisms have been identified in which RsmA binds near the SD sequence of target transcripts, thereby blocking ribosome access. Similarly, RsmA is shown to negatively regulate phz1 expression. Our new findings suggest that the differential regulation exerted by RsmA on the two phz clusters may confer an advantage to P. aeruginosa over other pseudomonads containing only a single phz cluster in their genomes.
References
[1]
Raaijmakers JM, Vlami M, de Souza JT (2002) Antibiotic production by bacterial biocontrol agents. Antonie Van Leeuwenhoek 81: 537–547. doi: 10.1023/a:1020501420831
[2]
Price-Whelan A, Dietrich LE, Newman DK (2006) Rethinking ‘secondary’ metabolism: physiological roles for phenazine antibiotics. Nat Chem Biol 2: 71–78. doi: 10.1038/nchembio764
[3]
Mavrodi DV, Blankenfeldt W, Thomashow LS (2006) Phenazine compounds in fluorescent Pseudomonas spp. biosynthesis and regulation. Annu Rev Phytopathol 44: 417–445. doi: 10.1146/annurev.phyto.44.013106.145710
[4]
Gross H, Loper JE (2009) Genomics of secondary metabolite production by Pseudomonas spp. Nat Prod Rep 26: 1408–1446. doi: 10.1039/b817075b
[5]
Mentel M, Ahuja EG, Mavrodi DV, Breinbauer R, Thomashow LS, et al. (2009) Of two make one: the biosynthesis of phenazines. Chembiochem 10: 2295–2304. doi: 10.1002/cbic.200900323
[6]
Dietrich LE, Price-Whelan A, Petersen A, Whiteley M, Newman DK (2006) The phenazine pyocyanin is a terminal signalling factor in the quorum sensing network of Pseudomonas aeruginosa. Mol Microbiol 61: 1308–1321. doi: 10.1111/j.1365-2958.2006.05306.x
[7]
Lau GW, Hassett DJ, Ran H, Kong F (2004) The role of pyocyanin in Pseudomonas aeruginosa infection. Trends Mol Med 10: 599–606. doi: 10.1016/j.molmed.2004.10.002
[8]
Haas D, Defago G (2005) Biological control of soil-borne pathogens by fluorescent pseudomonads. Nat Rev Microbiol 3: 307–319. doi: 10.1038/nrmicro1129
[9]
Mazzola M, Cook RJ, Thomashow LS, Weller DM, Pierson LS III (1992) Contribution of phenazine antibiotic biosynthesis to the ecological competence of fluorescent pseudomonads in soil habitats. Appl Environ Microbiol 58: 2616–2624.
[10]
Pierson LS III, Pierson EA (2010) Metabolism and function of phenazines in bacteria: impacts on the behavior of bacteria in the environment and biotechnological processes. Appl Microbiol Biotechnol 86: 1659–1670. doi: 10.1007/s00253-010-2509-3
[11]
Wang Y, Kern SE, Newman DK (2010) Endogenous phenazine antibiotics promote anaerobic survival of Pseudomonas aeruginosa via extracellular electron transfer. J Bacteriol 192: 365–369. doi: 10.1128/jb.01188-09
[12]
Stover CK, Pham XQ, Erwin AL, Mizoguchi SD, Warrener P, et al. (2000) Complete genome sequence of Pseudomonas aeruginosa PAO1, an opportunistic pathogen. Nature 406: 959–964.
[13]
Mavrodi DV, Bonsall RF, Delaney SM, Soule MJ, Phillips G, et al. (2001) Functional analysis of genes for biosynthesis of pyocyanin and phenazine-1-carboxamide from Pseudomonas aeruginosa PAO1. J Bacteriol 183: 6454–6465. doi: 10.1128/jb.183.21.6454-6465.2001
[14]
Fitzpatrick DA (2009) Lines of evidence for horizontal gene transfer of a phenazine producing operon into multiple bacterial species. J Mol Evol 68: 171–185. doi: 10.1007/s00239-009-9198-5
[15]
Mavrodi DV, Peever TL, Mavrodi OV, Parejko JA, Raaijmakers JM, et al. (2010) Diversity and evolution of the phenazine biosynthesis pathway. Appl Environ Microbiol 76: 866–879. doi: 10.1128/aem.02009-09
[16]
Li Y, Du X, Lu ZJ, Wu D, Zhao Y, et al. (2011) Regulatory feedback loop of two phz gene clusters through 5′-untranslated regions in Pseudomonas sp. M18. PLoS One 6: e19413. doi: 10.1371/journal.pone.0019413
[17]
Parsons JF, Greenhagen BT, Shi K, Calabrese K, Robinson H, et al. (2007) Structural and functional analysis of the pyocyanin biosynthetic protein PhzM from Pseudomonas aeruginosa. Biochemistry 46: 1821–1828. doi: 10.1021/bi6024403
[18]
Greenhagen BT, Shi K, Robinson H, Gamage S, Bera AK, et al. (2008) Crystal structure of the pyocyanin biosynthetic protein PhzS. Biochemistry 47: 5281–5289. doi: 10.1021/bi702480t
[19]
Huang J, Xu Y, Zhang H, Li Y, Huang X, et al. (2009) Temperature-dependent expression of phzM and its regulatory genes lasI and ptsP in rhizosphere isolate Pseudomonas sp. strain M18. Appl Environ Microbiol 75: 6568–6580. doi: 10.1128/aem.01148-09
[20]
Brennan RG, Link TM (2007) Hfq structure, function and ligand binding. Curr Opin Microbiol 10: 125–133. doi: 10.1016/j.mib.2007.03.015
[21]
Wang G, Huang X, Li S, Huang J, Wei X, et al. (2012) The RNA chaperone Hfq regulates antibiotic biosynthesis in the rhizobacterium Pseudomonas aeruginosa M18. J Bacteriol 194: 2443–2457. doi: 10.1128/jb.00029-12
[22]
Heeb S, Haas D (2001) Regulatory roles of the GacS/GacA two-component system in plant-associated and other gram-negative bacteria. Mol Plant Microbe Interact 14: 1351–1363. doi: 10.1094/mpmi.2001.14.12.1351
[23]
Kay E, Humair B, Denervaud V, Riedel K, Spahr S, et al. (2006) Two GacA-dependent small RNAs modulate the quorum-sensing response in Pseudomonas aeruginosa. J Bacteriol 188: 6026–6033. doi: 10.1128/jb.00409-06
[24]
Gonzalez N, Heeb S, Valverde C, Kay E, Reimmann C, et al. (2008) Genome-wide search reveals a novel GacA-regulated small RNA in Pseudomonas species. BMC Genomics 9: 167. doi: 10.1186/1471-2164-9-167
[25]
Liu MY, Romeo T (1997) The global regulator CsrA of Escherichia coli is a specific mRNA-binding protein. J Bacteriol 179: 4639–4642.
[26]
Liu Y, Cui Y, Mukherjee A, Chatterjee AK (1998) Characterization of a novel RNA regulator of Erwinia carotovora ssp. carotovora that controls production of extracellular enzymes and secondary metabolites. Mol Microbiol 29: 219–234. doi: 10.1046/j.1365-2958.1998.00924.x
[27]
Majdalani N, Vanderpool CK, Gottesman S (2005) Bacterial small RNA regulators. Crit Rev Biochem Mol Biol 40: 93–113. doi: 10.1080/10409230590918702
[28]
Reimmann C, Valverde C, Kay E, Haas D (2005) Posttranscriptional repression of GacS/GacA-controlled genes by the RNA-binding protein RsmE acting together with RsmA in the biocontrol strain Pseudomonas fluorescens CHA0. J Bacteriol 187: 276–285. doi: 10.1128/jb.187.1.276-285.2005
[29]
Storz G, Altuvia S, Wassarman KM (2005) An abundance of RNA regulators. Annu Rev Biochem 74: 199–217. doi: 10.1146/annurev.biochem.74.082803.133136
[30]
Lapouge K, Sineva E, Lindell M, Starke K, Baker CS, et al. (2007) Mechanism of hcnA mRNA recognition in the Gac/Rsm signal transduction pathway of Pseudomonas fluorescens. Mol Microbiol 66: 341–356. doi: 10.1111/j.1365-2958.2007.05909.x
[31]
Heeb S, Kuehne SA, Bycroft M, Crivii S, Allen MD, et al. (2006) Functional analysis of the post-transcriptional regulator RsmA reveals a novel RNA-binding site. J Mol Biol 355: 1026–1036. doi: 10.1016/j.jmb.2005.11.045
[32]
Wei BL, Brun-Zinkernagel AM, Simecka JW, Pruss BM, Babitzke P, et al. (2001) Positive regulation of motility and flhDC expression by the RNA-binding protein CsrA of Escherichia coli. Mol Microbiol 40: 245–256. doi: 10.1046/j.1365-2958.2001.02380.x
[33]
Baker CS, Morozov I, Suzuki K, Romeo T, Babitzke P (2002) CsrA regulates glycogen biosynthesis by preventing translation of glgC in Escherichia coli. Mol Microbiol 44: 1599–1610. doi: 10.1046/j.1365-2958.2002.02982.x
[34]
Brencic A, Lory S (2009) Determination of the regulon and identification of novel mRNA targets of Pseudomonas aeruginosa RsmA. Mol Microbiol 72: 612–632. doi: 10.1111/j.1365-2958.2009.06670.x
[35]
Mercante J, Edwards AN, Dubey AK, Babitzke P, Romeo T (2009) Molecular geometry of CsrA (RsmA) binding to RNA and its implications for regulated expression. J Mol Biol 392: 511–528. doi: 10.1016/j.jmb.2009.07.034
[36]
Yakhnin AV, Baker CS, Vakulskas CA, Yakhnin H, Berezin I, et al. (2013) CsrA activates flhDC expression by protecting flhDC mRNA from RNase E-mediated cleavage. Mol Microbiol 87: 851–866. doi: 10.1111/mmi.12136
[37]
Ge Y, Huang X, Wang S, Zhang X, Xu Y (2004) Phenazine-1-carboxylic acid is negatively regulated and pyoluteorin positively regulated by gacA in Pseudomonas sp. M18. FEMS Microbiol Lett 237: 41–47. doi: 10.1111/j.1574-6968.2004.tb09676.x
[38]
Reimmann C, Beyeler M, Latifi A, Winteler H, Foglino M, et al. (1997) The global activator GacA of Pseudomonas aeruginosa PAO1 positively controls the production of the autoinducer N-butyryl-homoserine lactone and the formation of the virulence factors pyocyanin, cyanide, and lipase. Mol Microbiol 24: 309–319. doi: 10.1046/j.1365-2958.1997.3291701.x
[39]
Blumer C, Heeb S, Pessi G, Haas D (1999) Global GacA-steered control of cyanide and exoprotease production in Pseudomonas fluorescens involves specific ribosome binding sites. Proc Natl Acad Sci U S A 96: 14073–14078. doi: 10.1073/pnas.96.24.14073
[40]
Reuter JS, Mathews DH (2010) RNAstructure: software for RNA secondary structure prediction and analysis. BMC Bioinformatics 11: 129. doi: 10.1186/1471-2105-11-129
[41]
Hofacker IL, Fontana W, Stadler PF, Bonhoeffer LS, Tacker M, et al. (1994) Fast folding and comparison of RNA secondary structures. Monatsh Chem 125: 167–168. doi: 10.1007/bf00818163
[42]
Zhang XH, Wang SL, Gen HF, Hu HB, Xu YQ (2005) Differential regulation of rsmA gene on biosynthesis of pyoluteorin and phenazine-1-carboxylic acid in Pseudomonas sp. M18. World J. Microbiol. Biotechnol. Appl. Biochem. 21: 883–889. doi: 10.1007/s11274-004-6358-z
[43]
Sabnis NA, Yang H, Romeo T (1995) Pleiotropic regulation of central carbohydrate metabolism in Escherichia coli via the gene csrA. J Biol Chem 270: 29096–29104. doi: 10.1074/jbc.270.49.29096
[44]
Patterson-Fortin LM, Vakulskas CA, Yakhnin H, Babitzke P, Romeo T (2013) Dual posttranscriptional regulation via a cofactor-responsive mRNA leader. J Mol Biol 425: 3662–77. doi: 10.1016/j.jmb.2012.12.010
[45]
Heidrich N, Chinali A, Gerth U, Brantl S (2006) The small untranslated RNA SR1 from the Bacillus subtilis genome is involved in the regulation of arginine catabolism. Mol Microbiol 62: 520–536. doi: 10.1111/j.1365-2958.2006.05384.x
[46]
Bardill JP, Zhao X, Hammer BK (2011) The Vibrio cholerae quorum sensing response is mediated by Hfq-dependent sRNA/mRNA base pairing interactions. Mol Microbiol 80: 1381–1394. doi: 10.1111/j.1365-2958.2011.07655.x
[47]
Soper T, Mandin P, Majdalani N, Gottesman S, Woodson SA (2010) Positive regulation by small RNAs and the role of Hfq. Proc Natl Acad Sci U S A 107: 9602–9607. doi: 10.1073/pnas.1004435107
[48]
Zuckerkandl E (2001) Intrinsically driven changes in gene interaction complexity. I. Growth of regulatory complexes and increase in number of genes. J Mol Evol 53: 539–554. doi: 10.1007/s002390010244
[49]
Recinos DA, Sekedat MD, Hernandez A, Cohen TS, Sakhtah H, et al. (2012) Redundant phenazine operons in Pseudomonas aeruginosa exhibit environment-dependent expression and differential roles in pathogenicity. Proc Natl Acad Sci U S A 109: 19420–19425. doi: 10.1073/pnas.1213901109
[50]
Wurtzel O, Yoder-Himes DR, Han K, Dandekar AA, Edelheit S, et al. (2012) The single-nucleotide resolution transcriptome of Pseudomonas aeruginosa grown in body temperature. PLoS Pathog. 8: e1002945. doi: 10.1371/journal.ppat.1002945
[51]
Liang H, Li L, Dong Z, Surette MG, Duan K (2008) The YebC family protein PA0964 negatively regulates the Pseudomonas aeruginosa quinolone signal system and pyocyanin production. J Bacteriol 190: 6217–6227. doi: 10.1128/jb.00428-08
[52]
Morris ER, Hall G, Li C, Heeb S, Kulkarni RV, et al. (2013) Structural rearrangement in an RsmA/CsrA ortholog of Pseudomonas aeruginosa creates a dimeric RNA-binding protein, RsmN. Structure 21: 1659–1671. doi: 10.1016/j.str.2013.07.007
[53]
Marden JN, Diaz MR, Walton WG, Gode CJ, Betts L, et al. (2013) An unusual CsrA family member operates in series with RsmA to amplify posttranscriptional responses in Pseudomonas aeruginosa. Proc Natl Acad Sci U S A 110: 15055–15060. doi: 10.1073/pnas.1307217110
[54]
King EO, Ward MK, Raney DE (1954) Two simple media for the demonstration of pyocyanin and fluorescin. J Lab Clin Med 44: 301–307.
[55]
Levitch ME, Stadtman ER (1964) Study of the Biosynthesis of Phenazine-1-Carboxylic Acid. Arch Biochem Biophys 106: 194–199. doi: 10.1016/0003-9861(64)90175-4
[56]
Sambrook J, Russell DW (2001) Molecular cloning: a laboratory manual, 3rd ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.
[57]
Bailey TL, Williams N, Misleh C, Li WW (2006) MEME: discovering and analyzing DNA and protein sequence motifs. Nucleic Acids Res 34: W369–373. doi: 10.1093/nar/gkl198
[58]
Zuker M (2003) Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res 31: 3406–3415. doi: 10.1093/nar/gkg595
[59]
Miller JH (1972) Experiments in molecular genetics. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.
[60]
Engohang-Ndong J, Baillat D, Aumercier M, Bellefontaine F, Besra GS, et al. (2004) EthR, a repressor of the TetR/CamR family implicated in ethionamide resistance in mycobacteria, octamerizes cooperatively on its operator. Mol Microbiol 51: 175–188. doi: 10.1046/j.1365-2958.2003.03809.x