[1] | Wang L, Jiang T (1994) On the complexity of multiple sequence alignment. Journal of Computational Biology 1: 337–348. doi: 10.1089/cmb.1994.1.337
|
[2] | Just W (1999) Computational complexity of multiple sequence alignment with SP-Score. Journal of Computational Biology 8: 615–623. doi: 10.1089/106652701753307511
|
[3] | Feng DF, Doolittle RF (1987) Progressive sequence alignment as a prerequisite to correct phylogenetic trees. Journal of Molecular Evolution 25: 351–360. doi: 10.1007/bf02603120
|
[4] | Barton GJ, Sternberg MJ (1987) A strategy for the rapid multiple alignment of protein sequences. Confidence levels from tertiary structure comparisons. Journal of Molecular Biology 198: 327–337. doi: 10.1016/0022-2836(87)90316-0
|
[5] | Krogh A, Brown M, Mian IS, Sj?lander K, Haussler D (1994) Hidden Markov models in computational biology: applications to protein modeling. Journal of Molecular Biology 235: 1501–1531. doi: 10.1006/jmbi.1994.1104
|
[6] | Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Research 22: 4673–4680. doi: 10.1093/nar/22.22.4673
|
[7] | Notredame C, Higgins D, Heringa J (2000) T-Coffee: A novel method for fast and accurate multiple sequence alignment. Journal of Molecular Biology 302: 205–217. doi: 10.1006/jmbi.2000.4042
|
[8] | Katoh K, Misawa K, Kuma K, Miyata T (2002) MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Research 30: 3059–3066. doi: 10.1093/nar/gkf436
|
[9] | Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Research 32: 1792–1797. doi: 10.1093/nar/gkh340
|
[10] | Do C, Mahabhashyam M, Brudno M, Batzoglou S (2005) ProbCons: Probabilistic consistencybased multiple sequence alignment. Genome Research 15: 330–340. doi: 10.1101/gr.2821705
|
[11] | Roshan U, Livesay DR (2006) Probalign: multiple sequence alignment using partition function posterior probabilities. Bioinformatics 22: 2715–2721. doi: 10.1093/bioinformatics/btl472
|
[12] | Liu Y, Schmidt B, Maskell D (2010) MSAProbs: multiple sequence alignment based on pair hidden Markov models and partition function posterior probabilities. Bioinformatics 26: 1958–1964. doi: 10.1093/bioinformatics/btq338
|
[13] | O′Sullivan O, Suhre K, Abergel C, Higgins D, Notredame C (2004) 3DCoffee: Combining protein sequences and structures within multiple sequence alignments. Journal of Molecular Biology 340: 385–395. doi: 10.1016/j.jmb.2004.04.058
|
[14] | Deng X, Cheng J (2011) MSACompro: protein multiple sequence alignment using predicted secondary structure, solvent accessibility, and residue-residue contacts. BMC Bioinformatics 12: 472. doi: 10.1186/1471-2105-12-472
|
[15] | Katoh K, Kuma Ki, Toh H, Miyata T (2005) MAFFT version 5: improvement in accuracy of multiple sequence alignment. Nucleic Acids Research 33: 511–518. doi: 10.1093/nar/gki198
|
[16] | Huerta-Cepas J, Capella-Gutierrez S, Pryszcz LP, Denisov I, Kormes D, et al. (2011) PhylomeDB v3.0: an expanding repository of genome-wide collections of trees, alignments and phylogeny-based orthology and paralogy predictions. Nucleic Acids Research 39: 556–560. doi: 10.1093/nar/gkq1109
|
[17] | Capella-Gutierrez S (2012) Analysis of multiple protein sequence alignments and phylogenetic trees in the context of phylogenomics studies. Pompeu Fabra UniversityPh.D. thesis
|
[18] | Lassmann T, Sonnhammer E (2005) Kalign|an accurate and fast multiple sequence alignment algorithm. BMC Bioinformatics 6: 298. doi: 10.1186/1471-2105-6-298
|
[19] | Lassmann T, Frings O, Sonnhammer E (2009) Kalign2: high-performance multiple alignment of protein and nucleotide sequences allowing external features. Nucleic Acids Research 37: 858–865. doi: 10.1093/nar/gkn1006
|
[20] | Wu S, Manber U (1992) Fast text searching: allowing errors. Communications of the ACM 35: 83–91. doi: 10.1145/135239.135244
|
[21] | Muth R, Manber U (1996) Approximate multiple string search. In: Proceedings of the 7th Annual Symposium on Combinatorial Pattern Matching. pp. 75-86.
|
[22] | Deorowicz S, Debudaj-Grabysz A, Gudy? A (2014) Kalign-LCS|more accurate and faster variant of Kalign2 algorithm for the multiple sequence alignment problem. In: Man-Machine Interactions 3, Springer Cham Heidelberg New York Dordrecht London. pp. 495-502.
|
[23] | Katoh K, Toh H (2007) Parttree: an algorithm to build an approximate tree from a large number of unaligned sequences. Bioinformatics 23: 372–374. doi: 10.1093/bioinformatics/btl592
|
[24] | Sievers F, Wilm A, Dineen D, Gibson T, Karplus K, et al. (2011) Fast, scalable generation of highquality protein multiple sequence alignments using Clustal Omega. Molecular Systems Biology 7: 539. doi: 10.1038/msb.2011.75
|
[25] | Blackshields G, Sievers F, Shi W, Wilm A, Higgins D (2010) Sequence embedding for fast construction of guide trees for multiple sequence alignment. Algorithms for Molecular Biology 5: 21. doi: 10.1186/1748-7188-5-21
|
[26] | Liu W, Schmidt B, Voss G, Muller-Wittig W (2006) GPU-ClustalW: Using graphics hardware to accelerate multiple sequence alignment. Lecture Notes in Computer Science 4297: 363–374. doi: 10.1007/11945918_37
|
[27] | Liu Y, Schmidt B, Maskell D (2009) MSA-CUDA: Multiple sequence alignment on graphics processing units with CUDA. In: Proceedings of the 20th IEEE International Conference on Applicationspecific Systems, Architectures and Processors. pp. 121-128.
|
[28] | Gudy? A, Deorowicz S (2012) A parallel algorithm for the constrained multiple sequence alignment problem designed for GPUs. International Journal of Foundations of Computer Science 23: 877–901. doi: 10.1142/s0129054112500098
|
[29] | Lin YS, Lin CY, Li ST, Lee JY, Tang CY (2010) GPU-REMuSiC: the implementation of constrain multiple sequence alignment on graphics processing units. In: Proceedings of the 2010 GPU Technology Conference. NVidia.
|
[30] | Blazewicz J, Frohmberg W, Kierzynka M, Wojciechowski P (2013) G-MSA|A GPU-based, fast and accurate algorithm for multiple sequence alignment. Journal of Parallel and Distributed Computing 73: 32–41. doi: 10.1016/j.jpdc.2012.04.004
|
[31] | OpenMP ARB (2013) OpenMP Application Program Interface version 4.0. Available: http://www.openmp.org/mp-documents/OpenM?P4.0.0.pdf.
|
[32] | Manavski S, Valle G (2008) CUDA compatible GPU cards as efficient hardware accelerators for Smith-Waterman sequence alignment. BMC Bioinformatics 9: S10. doi: 10.1186/1471-2105-9-s2-s10
|
[33] | Ligowski L, Rudnicki W (2009) An efficient implementation of Smith Waterman algorithm on GPU using CUDA, for massively parallel scanning of sequence databases. In: Proceedings of the 2009 IEEE International Symposium on Parallel&Distributed Processing. Washington,USA: IEEE Computer Society, pp. 1-8.
|
[34] | Liu Y, Schmidt B, Maskell D (2010) CUDASW++2.0: enhanced Smith-Waterman protein database search on CUDA-enabled GPUs based on SIMT and virtualized SIMD abstractions. BMC Research Notes 3: 93. doi: 10.1186/1756-0500-3-93
|
[35] | Khajeh-Saeed A, Poole S, Perot J (2010) Acceleration of the Smith-Waterman algorithm using single and multiple graphics processors. Journal of Computational Physics 229: 4247–4258. doi: 10.1016/j.jcp.2010.02.009
|
[36] | Blazewicz J, Frohmberg W, Kierzynka M, Pesch E, Wojciechowski P (2011) Protein alignment algorithms with an efficient backtracking routine on multiple GPUs. BMC Bioinformatics 12: 181. doi: 10.1186/1471-2105-12-181
|
[37] | Liu Y, Wirawan A, Schmidt B (2013) CUDASW++ 3.0: accelerating Smith-Waterman protein database search by coupling CPU and GPU SIMD instructions. BMC Bioinformatics 14: 117. doi: 10.1186/1471-2105-14-117
|
[38] | Liu CM, Wong T, Wu E, Luo R, Yiu SM, et al. (2012) SOAP3: ultra-fast GPU-based parallel alignment tool for short reads. Bioinformatics 28: 878–879. doi: 10.1093/bioinformatics/bts061
|
[39] | Chang DJ, Kimmer C, Ouyang M (2010) Accelerating the Nussinov RNA folding algorithm with CUDA/GPU. In: Proceedings of the 10th IEEE International Symposium on Signal Processing and Information. IEEE Computer Society, pp. 120-125: 20. doi: 10.1109/isspit.2010.5711746
|
[40] | Suchard MA, Rambaut A (2009) Many-core algorithms for statistical phylogenetics. Bioinformatics 25: 1370–1376. doi: 10.1093/bioinformatics/btp244
|
[41] | Demouth J (2012) Sparse Matrix-Matrix Multiplication on the GPU. In: Proceedings of the GPU Technology Conference 2012. NVidia.
|
[42] | NVidia (2013) CUSP library version 0.4.0. Available: https://developer.nvidia.com/cusp.
|
[43] | NVidia (2013) cuSPARSE library version 5.5. Available: https://developer.nvidia.com/cusparse.
|
[44] | Durbin R, Eddy SR, Krogh A, Mitchison G (1998) Biological Sequence Analysis: Probabilistic Models of Proteins and Nucleic Acids. Cambridge University Press.
|
[45] | Thompson JD, Plewniak F, Poch O (1999) A comprehensive comparison of multiple sequence alignment programs. Nucleic Acids Research 27: 2682–2690. doi: 10.1093/nar/27.13.2682
|
[46] | Stoye J, Evers D, Meyer F (1998) Rose: generating sequence families. Bioinformatics 14: 157–163. doi: 10.1093/bioinformatics/14.2.157
|
[47] | NVidia (2013) CUDA Parallel Computing Platform version 5.5. Available: http://docs.nvidia.com/cuda/pdf/CUDA_C_P?rogramming_Guide.pdf.
|
[48] | Khronos Group (2013) The OpenCL Specification version 2.0. Available: http://www.khronos.org/registry/cl/specs?/opencl-2.0.pdf.
|
[49] | Viterbi A (1967) Error bounds for convolutional codes and an asymptotically optimum decoding algorithm. IEEE Transactions on Information Theory 13: 260–269. doi: 10.1109/tit.1967.1054010
|
[50] | Sneath P, Sokal R (1973) Numerical Taxonomy. The Principles and Practice of Numerical Classification. San Francisco, USA: W.H. Freeman Limited.
|
[51] | Needleman S, Wunsch C (1970) A general method applicable to the search for similarities in the amino acid sequence of two proteins. Journal of Molecular Biology 48: 443 - 453.
|
[52] | Thompson J, Koehl P, Ripp R, Poch O (2005) BAliBASE 3.0: latest developments of the multiple sequence alignment benchmark. Proteins 61: 127–136. doi: 10.1002/prot.20527
|
[53] | Raghava GPS, Searle S, Audley P, Barber J, Barton G (2003) OXBench: A benchmark for evaluation of protein multiple sequence alignment accuracy. BMC Bioinformatics 4: 47. doi: 10.1186/1471-2105-4-47
|
[54] | Edgar RC (2009) Benchmark collection. Available: http://www.drive5.com/bench.
|
[55] | Finn RD, Tate J, Mistry J, Coggill PC, Sammut SJ, et al. (2008) The Pfam protein families database. Nucleic Acids Research 36: D281–D288. doi: 10.1093/nar/gkm960
|
[56] | Edgar RC (2009) QSCORE multiple alignment scoring software. Available: http://www.drive5.com/qscore.
|
[57] | Wilcoxon F (1945) Individual Comparisons by Ranking Methods. Biometrics Bulletin 1: 80–83. doi: 10.2307/3001968
|