全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2014 

A Genetic Polymorphism of the Endogenous Opioid Dynorphin Modulates Monetary Reward Anticipation in the Corticostriatal Loop

DOI: 10.1371/journal.pone.0089954

Full-Text   Cite this paper   Add to My Lib

Abstract:

The dynorphin/κ-opioid receptor (KOP-R) system has been shown to play a role in different types of behavior regulation, including reward-related behavior and drug craving. It has been shown that alleles with 3 or 4 repeats (HH genotype) of the variable nucleotide tandem repeat (68-bp VNTR) functional polymorphism of the prodynorphin (PDYN) gene are associated with higher levels of dynorphin peptides than alleles with 1 or 2 repeats (LL genotype). We used fMRI on N = 71 prescreened healthy participants to investigate the effect of this polymorphism on cerebral activation in the limbic-corticostriatal loop during reward anticipation. Individuals with the HH genotype showed higher activation than those with the LL genotype in the medial orbitofrontal cortex (mOFC) when anticipating a possible monetary reward. In addition, the HH genotype showed stronger functional coupling (as assessed by effective connectivity analyses) of mOFC with VMPFC, subgenual anterior cingulate cortex, and ventral striatum during reward anticipation. This hints at a larger sensitivity for upcoming rewards in individuals with the HH genotype, resulting in a higher motivation to attain these rewards. These findings provide first evidence in humans that the PDYN polymorphism modulates neural processes associated with the anticipation of rewards, which ultimately may help to explain differences between genotypes with respect to addiction and drug abuse.

References

[1]  Dreber A, Apicella CL, Eisenberg DTa, Garcia JR, Zamore RS, et al. (2009) The 7R polymorphism in the dopamine receptor D4 gene (DRD4) is associated with financial risk taking in men. Evolution and Human Behavior 30: 85–92. doi: 10.1016/j.evolhumbehav.2008.11.001
[2]  Jocham G, Klein Ta, Neumann J, von Cramon DY, Reuter M, et al. (2009) Dopamine DRD2 polymorphism alters reversal learning and associated neural activity. The Journal of neuroscience : the official journal of the Society for Neuroscience 29: 3695–3704. doi: 10.1523/jneurosci.5195-08.2009
[3]  Marco-Pallarés J, Cucurell D, Cunillera T, Kr?mer UM, Càmara E, et al. (2009) Genetic variability in the dopamine system (dopamine receptor D4, catechol-O-methyltransferase) modulates neurophysiological responses to gains and losses. Biological Psychiatry 66: 154–161. doi: 10.1016/j.biopsych.2009.01.006
[4]  Camara E, Kr?mer UM, Cunillera T, Marco-Pallarés J, Cucurell D, et al. (2010) The effects of COMT (Val108/158Met) and DRD4 (SNP -521) dopamine genotypes on brain activations related to valence and magnitude of rewards. Cerebral cortex (New York, NY : 1991) 20: 1985–1996. doi: 10.1093/cercor/bhp263
[5]  Kosterlitz HW, Corbett, A D (1989) Paterson, S J (1989) Opioid receptors and ligands. NIDA Research Monographs 95: 159–166.
[6]  Chavkin C, Goldstein A (1981) Specific receptor for the opioid peptide dynorphin: structure–activity relationships. Proceedings of the National Academy of Sciences of the United States of America 78: 6543–6547. doi: 10.1073/pnas.78.10.6543
[7]  Goldstein A, Tachibana S, Lowney LI, Hunkapiller M, Hood L (1979) Dynorphin-(1–13), an extraordinarily potent opioid peptide. Proceedings of the National Academy of Sciences of the United States of America 76: 6666–6670. doi: 10.1073/pnas.76.12.6666
[8]  Margolis EB, Lock H, Chefer VI, Shippenberg TS, Hjelmstad GO, et al. (2006) Kappa opioids selectively control dopaminergic neurons projecting to the prefrontal cortex. Proceedings of the National Academy of Sciences of the United States of America 103: 2938–2942. doi: 10.1073/pnas.0511159103
[9]  Steiner H, Gerfen CR (1996) Dynorphin regulates D1 dopamine receptor-mediated responses in the striatum: relative contributions of pre- and postsynaptic mechanisms in dorsal and ventral striatum demonstrated by altered immediate-early gene induction. The Journal of Comparative Neurology 376: 530–541. doi: 10.1002/(sici)1096-9861(19961223)376:4<530::aid-cne3>3.0.co;2-2
[10]  Steiner H, Gerfen CR (1998) Role of dynorphin and enkephalin in the regulation of striatal output pathways and behavior. Experimental brain research Experimentelle Hirnforschung Expérimentation cérébrale 123: 60–76. doi: 10.1007/s002210050545
[11]  Di Chiara G, Imperato A (1988) Opposite effects of mu and kappa opiate agonists on dopamine release in the nucleus accumbens and in the dorsal caudate of freely moving rats. The Journal of pharmacology and experimental therapeutics 244: 1067–1080.
[12]  Hurd YL (1996) Differential messenger RNA expression of prodynorphin and proenkephalin in the human brain. Neuroscience 72: 767–783. doi: 10.1016/0306-4522(96)00002-4
[13]  Di Benedetto M, D’Addario C, Candeletti S, Romualdi P (2006) Chronic and acute effects of 3,4-methylenedioxy-N-methylamphetamine (‘Ecstasy’) administration on the dynorphinergic system in the rat brain. Neuroscience 137: 187–196. doi: 10.1016/j.neuroscience.2005.09.015
[14]  O’Doherty JP (2004) Reward representations and reward-related learning in the human brain: Insights from neuroimaging. Current Opinion in Neurobiology 14: 769–776. doi: 10.1016/j.conb.2004.10.016
[15]  McClure SM, York MK, Montague PR (2004) The neural substrates of reward processing in humans: the modern role of FMRI. The Neuroscientist 10: 260–268. doi: 10.1177/1073858404263526
[16]  Schultz W (2002) Getting Formal with Dopamine and Reward. Neuron 36: 241–263. doi: 10.1016/s0896-6273(02)00967-4
[17]  Winstanley CA, Nestler EJ (2008) The Molecular Mechanisms of Reward. In: Editor-in-Chief: John HB, editor. Learning and Memory: A Comprehensive Reference. Oxford: Academic Press. 193–215.
[18]  Sescousse G, Caldú X, Segura B, Dreher J-C (2013) Processing of primary and secondary rewards: A quantitative meta-analysis and review of human functional neuroimaging studies. Neuroscience & Biobehavioral Reviews.
[19]  Bühler M, Vollst?dt-Klein S, Kobiella A, Budde H, Reed LJ, et al. (2010) Nicotine Dependence Is Characterized by Disordered Reward Processing in a Network Driving Motivation. Biological Psychiatry 67: 745–752. doi: 10.1016/j.biopsych.2009.10.029
[20]  Knoll AT, Carlezon WA Jr (2010) Dynorphin, stress, and depression. Brain Research 1314: 56–73. doi: 10.1016/j.brainres.2009.09.074
[21]  Wei SG, Zhu YS, Lai JH, Xue HX, Chai ZQ, et al. (2011) Association between heroin dependence and prodynorphin gene polymorphisms. Brain Research Bulletin 85: 238–242. doi: 10.1016/j.brainresbull.2011.02.010
[22]  Nomura A, Ujike H, Tanaka Y, Otani K, Morita Y, et al. (2006) Genetic variant of prodynorphin gene is risk factor for methamphetamine dependence. Neuroscience Letters 400: 158–162. doi: 10.1016/j.neulet.2006.02.038
[23]  Shippenberg TS, Zapata A, Chefer VI (2007) Dynorphin and the pathophysiology of drug addiction. Pharmacology & Therapeutics 116: 306–321. doi: 10.1016/j.pharmthera.2007.06.011
[24]  Zimprich a, Kraus J, W?ltje M, Mayer P, Rauch E, et al. (2000) An allelic variation in the human prodynorphin gene promoter alters stimulus-induced expression. Journal of neurochemistry 74: 472–477. doi: 10.1046/j.1471-4159.2000.740472.x
[25]  Dahl JP, Weller AE, Kampman KM, Oslin DW, Lohoff FW, et al. (2005) Confirmation of the association between a polymorphism in the promoter region of the prodynorphin gene and cocaine dependence. American journal of medical genetics Part B, Neuropsychiatric genetics: the official publication of the International Society of Psychiatric Genetics 139B: 106–108. doi: 10.1002/ajmg.b.30238
[26]  Chen ACH, LaForge KS, Ho A, McHugh PF, Kellogg S, et al. (2002) Potentially functional polymorphism in the promoter region of prodynorphin gene may be associated with protection against cocaine dependence or abuse. American journal of medical genetics 114: 429–435. doi: 10.1002/ajmg.10362
[27]  Nikoshkov A, Drakenberg K, Wang X, Horvath MC, Keller E, et al. (2008) Opioid neuropeptide genotypes in relation to heroin abuse: dopamine tone contributes to reversed mesolimbic proenkephalin expression. Proceedings of the National Academy of Sciences of the United States of America 105: 786–791. doi: 10.1073/pnas.0710902105
[28]  Butelman ER, Yuferov V, Kreek MJ (2012) κ-opioid receptor/dynorphin system: genetic and pharmacotherapeutic implications for addiction. Trends in Neurosciences 35: 587–596. doi: 10.1016/j.tins.2012.05.005
[29]  Knutson B, Westdorp a, Kaiser E, Hommer D (2000) FMRI visualization of brain activity during a monetary incentive delay task. NeuroImage 12: 20–27. doi: 10.1006/nimg.2000.0593
[30]  Knutson B, Adams CM, Fong GW, Hommer D (2001) Anticipation of increasing monetary reward selectively recruits nucleus accumbens. The Journal of neuroscience: the official journal of the Society for Neuroscience 21: RC159.
[31]  Knutson B, Fong GW, Bennett SM, Adams CM, Hommer D (2003) A region of mesial prefrontal cortex tracks monetarily rewarding outcomes: characterization with rapid event-related fMRI. NeuroImage 18: 263–272. doi: 10.1016/s1053-8119(02)00057-5
[32]  Diekhof EK, Kaps L, Falkai P, Gruber O (2012) The role of the human ventral striatum and the medial orbitofrontal cortex in the representation of reward magnitude - an activation likelihood estimation meta-analysis of neuroimaging studies of passive reward expectancy and outcome processing. Neuropsychologia 50: 1252–1266. doi: 10.1016/j.neuropsychologia.2012.02.007
[33]  Carter RM, Macinnes JJ, Huettel SA, Adcock RA (2009) Activation in the VTA and nucleus accumbens increases in anticipation of both gains and losses. Frontiers in behavioral neuroscience 3: 21–21. doi: 10.3389/neuro.08.021.2009
[34]  Salamone John D, Correa M (2012) The Mysterious Motivational Functions of Mesolimbic Dopamine. Neuron 76: 470–485. doi: 10.1016/j.neuron.2012.10.021
[35]  St?gmann E, Zimprich A, Baumgartner C, Aull-Watschinger S, H?llt V, et al. (2002) A functional polymorphism in the prodynorphin gene promotor is associated with temporal lobe epilepsy. Annals of Neurology 51: 260–263. doi: 10.1002/ana.10108
[36]  Carver CS, White TL (1994) Behavioral inhibition, behavioral activation, and affective responses to impending reward and punishment: The BIS/BAS Scales. Journal of Personality and Social Psychology 67: 319–333. doi: 10.1037//0022-3514.67.2.319
[37]  Sladky R, Friston KJ, Tr?stl J, Cunnington R, Moser E, et al. (2011) Slice-timing effects and their correction in functional MRI. NeuroImage 58: 588–594. doi: 10.1016/j.neuroimage.2011.06.078
[38]  Kriegeskorte N, Simmons WK, Bellgowan PS, Baker CI (2009) Circular analysis in systems neuroscience: the dangers of double dipping. Nature Neuroscience 12: 535–540. doi: 10.1038/nn.2303
[39]  Tzourio-Mazoyer N, Landeau B, Papathanassiou D, Crivello F, Etard O, et al. (2002) Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. NeuroImage 15: 273–289. doi: 10.1006/nimg.2001.0978
[40]  Plichta MM, Schwarz AJ, Grimm O, Morgen K, Mier D, et al. (2012) Test–retest reliability of evoked BOLD signals from a cognitive–emotive fMRI test battery. NeuroImage 60: 1746–1758. doi: 10.1016/j.neuroimage.2012.01.129
[41]  Heck R, Thomas S, Tabata L, editors (2011) Multilevel and Longitudinal Modeling with IBM SPSS.: New York: Routledge. Taylor & Francis Group.
[42]  McCulloch CE (2006) Generalized Linear Mixed Models. Encyclopedia of Environmetrics: John Wiley & Sons, Ltd.
[43]  Schwarz G (1978) Estimating the dimension of a model. The annals of statistics 6: 461–464. doi: 10.1214/aos/1176344136
[44]  Friston KJ, Buechel C, Fink GR, Morris J, Rolls E, et al. (1997) Psychophysiological and Modulatory Interactions in Neuroimaging. NeuroImage 6: 218–229. doi: 10.1006/nimg.1997.0291
[45]  Rademacher L, Krach S, Kohls G, Irmak A, Grunder G, et al. (2010) Dissociation of neural networks for anticipation and consumption of monetary and social rewards. NeuroImage 49: 3276–3285. doi: 10.1016/j.neuroimage.2009.10.089
[46]  Clithero JA, Reeck C, Carter RM, Smith DV, Huettel SA (2011) Nucleus accumbens mediates relative motivation for rewards in the absence of choice. Frontiers in Human Neuroscience 5.
[47]  Sescousse G, Barbalat G, Domenech P, Dreher J-C (2013) Imbalance in the sensitivity to different types of rewards in pathological gambling. Brain.
[48]  Arana FS, Parkinson JA, Hinton E, Holland AJ, Owen AM, et al. (2003) Dissociable Contributions of the Human Amygdala and Orbitofrontal Cortex to Incentive Motivation and Goal Selection. The Journal of Neuroscience 23: 9632–9638.
[49]  Schoenbaum G, Chiba AA, Gallagher M (1998) Orbitofrontal cortex and basolateral amygdala encode expected outcomes during learning. Nat Neurosci 1: 155–159.
[50]  Gottfried JA, O’Doherty J, Dolan RJ (2003) Encoding Predictive Reward Value in Human Amygdala and Orbitofrontal Cortex. Science 301: 1104–1107. doi: 10.1126/science.1087919
[51]  Tremblay L, Schultz W (1999) Relative reward preference in primate orbitofrontal cortex. Nature 398: 704–708. doi: 10.1093/acprof:oso/9780198565741.003.0007
[52]  Dolan RJ (2007) The human amygdala and orbital prefrontal cortex in behavioural regulation. Philosophical transactions of the Royal Society of London Series B, Biological sciences 362: 787–799. doi: 10.1098/rstb.2007.2088
[53]  Breiter HC, Aharon I, Kahneman D, Dale A, Shizgal P (2001) Functional Imaging of Neural Responses to Expectancy and Experience of Monetary Gains and Losses. Neuron 30: 619–639. doi: 10.1016/s0896-6273(01)00303-8
[54]  Yacubian J, Glascher J, Schroeder K, Sommer T, Braus DF, et al. (2006) Dissociable Systems for Gain- and Loss-Related Value Predictions and Errors of Prediction in the Human Brain. Journal of Neuroscience 26: 9530–9537. doi: 10.1523/jneurosci.2915-06.2006
[55]  Schott BH, Minuzzi L, Krebs RM, Elmenhorst D, Lang M, et al. (2008) Mesolimbic functional magnetic resonance imaging activations during reward anticipation correlate with reward-related ventral striatal dopamine release. Journal of Neuroscience 28: 14311–14319. doi: 10.1523/jneurosci.2058-08.2008
[56]  Holsen LM, Zarcone JR, Thompson TI, Brooks WM, Anderson MF, et al. (2005) Neural mechanisms underlying food motivation in children and adolescents. NeuroImage 27: 669–676. doi: 10.1016/j.neuroimage.2005.04.043
[57]  Beaver JD, Lawrence AD, van Ditzhuijzen J, Davis MH, Woods A, et al. (2006) Individual Differences in Reward Drive Predict Neural Responses to Images of Food. The Journal of Neuroscience 26: 5160–5166. doi: 10.1523/jneurosci.0350-06.2006
[58]  Salzman CD, Fusi S (2010) Emotion, Cognition, and Mental State Representation in Amygdala and Prefrontal Cortex. Annual review of neuroscience 33: 173–202. doi: 10.1146/annurev.neuro.051508.135256
[59]  Berridge KC, Robinson TE (1998) What is the role of dopamine in reward: hedonic impact, reward learning, or incentive salience? Brain Research Reviews 28: 309–369. doi: 10.1016/s0165-0173(98)00019-8
[60]  Kahnt T, Chang LJ, Park SQ, Heinzle J, Haynes J-D (2012) Connectivity-based parcellation of the human orbitofrontal cortex. The Journal of neuroscience : the official journal of the Society for Neuroscience 32: 6240–6250. doi: 10.1523/jneurosci.0257-12.2012
[61]  Bartra O, McGuire JT, Kable JW (2013) The valuation system: A coordinate-based meta-analysis of BOLD fMRI experiments examining neural correlates of subjective value. NeuroImage 76: 412–427. doi: 10.1016/j.neuroimage.2013.02.063
[62]  Roesch MR, Calu DJ, Esber GR, Schoenbaum G (2010) All That Glitters … Dissociating Attention and Outcome Expectancy From Prediction Errors Signals. Journal of Neurophysiology 104: 587–595. doi: 10.1152/jn.00173.2010
[63]  Hjelmstad GO, Fields HL (2003) Kappa Opioid Receptor Activation in the Nucleus Accumbens Inhibits Glutamate and GABA Release Through Different Mechanisms. Journal of Neurophysiology 89: 2389–2395. doi: 10.1152/jn.01115.2002
[64]  Chefer VI, Czyzyk T, Bolan EA, Moron J, Pintar JE, et al. (2005) Endogenous κ-Opioid Receptor Systems Regulate Mesoaccumbal Dopamine Dynamics and Vulnerability to Cocaine. The Journal of Neuroscience 25: 5029–5037. doi: 10.1523/jneurosci.0854-05.2005
[65]  Hariri AR, Weinberger DR (2003) Imaging genomics. 259–270.
[66]  London ED, Ernst M, Grant S, Bonson K, Weinstein A (2000) Orbitofrontal Cortex and Human Drug Abuse: Functional Imaging. Cerebral Cortex 10: 334–342. doi: 10.1093/cercor/10.3.334
[67]  Koob GF, Buck CL, Cohen A, Edwards S, Park PE, et al.. (2014) Addiction as a stress surfeit disorder. Neuropharmacology 76, Part B: 370–382.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133