The extreme diversity of HIV-1 strains presents a formidable challenge for HIV-1 vaccine design. Although antibodies (Abs) can neutralize HIV-1 and potentially protect against infection, antibodies that target the immunogenic viral surface protein gp120 have widely variable and poorly predictable cross-strain reactivity. Here, we developed a novel computational approach, the Method of Dynamic Epitopes, for identification of neutralization epitopes targeted by anti-HIV-1 monoclonal antibodies (mAbs). Our data demonstrate that this approach, based purely on calculated energetics and 3D structural information, accurately predicts the presence of neutralization epitopes targeted by V3-specific mAbs 2219 and 447-52D in any HIV-1 strain. The method was used to calculate the range of conservation of these specific epitopes across all circulating HIV-1 viruses. Accurately identifying an Ab-targeted neutralization epitope in a virus by computational means enables easy prediction of the breadth of reactivity of specific mAbs across the diversity of thousands of different circulating HIV-1 variants and facilitates rational design and selection of immunogens mimicking specific mAb-targeted epitopes in a multivalent HIV-1 vaccine. The defined epitopes can also be used for the purpose of epitope-specific analyses of breakthrough sequences recorded in vaccine clinical trials. Thus, our study is a prototype for a valuable tool for rational HIV-1 vaccine design.
References
[1]
Barouch DH (2008) Challenges in the development of an HIV-1 vaccine. Nature 455: 613–619. doi: 10.1038/nature07352
[2]
Buchbinder SP, Mehrotra DV, Duerr A, Fitzgerald DW, Mogg R, et al. (2008) Efficacy assessment of a cell-mediated immunity HIV-1 vaccine (the Step Study): a double-blind, randomised, placebo-controlled, test-of-concept trial. Lancet 372: 1881–1893. doi: 10.1016/s0140-6736(08)61591-3
[3]
Rerks-Ngarm S, Pitisuttithum P, Nitayaphan S, Kaewkungwal J, Chiu J, et al. (2009) Vaccination with ALVAC and AIDSVAX to prevent HIV-1 infection in Thailand. N Engl J Med 361: 2209–2220. doi: 10.1056/nejmoa0908492
[4]
Zolla-Pazner S (2004) Identifying epitopes of HIV-1 that induce protective antibodies. Nat Rev Immunol 4: 199–210. doi: 10.1038/nri1307
[5]
Zolla-Pazner S, Cardozo T (2010) Structure-function relationships of HIV-1 envelope sequence-variable regions refocus vaccine design. Nat Rev Immunol 10: 527–535. doi: 10.1038/nri2801
[6]
Berger EA (1998) And the best picture is–the HIV gp120 envelope, please! Nat Struct Biol. 5: 671–674. doi: 10.1038/1362
[7]
Julien JP, Cupo A, Sok D, Stanfield RL, Lyumkis D, et al.. (2013) Crystal Structure of a Soluble Cleaved HIV-1 Envelope Trimer. Science.
[8]
Pantophlet R, Burton DR (2006) GP120: target for neutralizing HIV-1 antibodies. Annu Rev Immunol 24: 739–769. doi: 10.1146/annurev.immunol.24.021605.090557
[9]
Almond D, Kimura T, Kong X, Swetnam J, Zolla-Pazner S, et al. (2010) Structural conservation predominates over sequence variability in the crown of HIV type 1’s V3 loop. AIDS Res Hum Retroviruses 26: 717–723. doi: 10.1089/aid.2009.0254
[10]
Hioe CE, Wrin T, Seaman MS, Yu X, Wood B, et al. (2010) Anti-V3 monoclonal antibodies display broad neutralizing activities against multiple HIV-1 subtypes. PLoS One 5: e10254. doi: 10.1371/journal.pone.0010254
[11]
Walker LM, Phogat SK, Chan-Hui PY, Wagner D, Phung P, et al. (2009) Broad and potent neutralizing antibodies from an African donor reveal a new HIV-1 vaccine target. Science 326: 285–289. doi: 10.1126/science.1178746
[12]
Haynes BF, Gilbert PB, McElrath MJ, Zolla-Pazner S, Tomaras GD, et al. (2012) Immune-correlates analysis of an HIV-1 vaccine efficacy trial. The New England journal of medicine 366: 1275–1286. doi: 10.1056/nejmoa1113425
[13]
Cardozo T, Swetnam J, Pinter A, Krachmarov C, Nadas A, et al. (2009) Worldwide distribution of HIV type 1 epitopes recognized by human anti-V3 monoclonal antibodies. AIDS Res Hum Retroviruses 25: 441–450. doi: 10.1089/aid.2008.0188
[14]
Swetnam J, Shmelkov E, Zolla-Pazner S, Cardozo T (2010) Comparative Magnitude of Cross-Strain Conservation of HIV Variable Loop Neutralization Epitopes. PLoS One 5: e15994. doi: 10.1371/journal.pone.0015994
[15]
Agarwal A, Hioe CE, Swetnam J, Zolla-Pazner S, Cardozo T (2011) Quantitative assessment of masking of neutralization epitopes in HIV-1. Vaccine 29: 6736–6741. doi: 10.1016/j.vaccine.2010.12.052
[16]
Shmelkov E, Nadas A, Swetnam J, Zolla-Pazner S, Cardozo T (2011) Indirect detection of an epitope-specific response to HIV-1 gp120 immunization in human subjects. PLoS One 6: e27279. doi: 10.1371/journal.pone.0027279
[17]
Zolla-Pazner S, Kong XP, Jiang X, Cardozo T, Nadas A, et al. (2011) Cross-clade HIV-1 neutralizing antibodies induced with V3-scaffold protein immunogens following priming with gp120 DNA. J Virol 85: 9887–9898. doi: 10.1128/jvi.05086-11
[18]
Gorny MK, Williams C, Volsky B, Revesz K, Cohen S, et al. (2002) Human monoclonal antibodies specific for conformation-sensitive epitopes of V3 neutralize human immunodeficiency virus type 1 primary isolates from various clades. Journal of virology 76: 9035–9045. doi: 10.1128/jvi.76.18.9035-9045.2002
[19]
Conley AJ, Gorny MK, Kessler JA 2nd, Boots LJ, Ossorio-Castro M, et al. (1994) Neutralization of primary human immunodeficiency virus type 1 isolates by the broadly reactive anti-V3 monoclonal antibody, 447–52D. Journal of virology 68: 6994–7000.
[20]
Bell CH, Pantophlet R (2008) Schiefner A, Cavacini LA, Stanfield RL, et al (2008) Structure of antibody F425-B4e8 in complex with a V3 peptide reveals a new binding mode for HIV-1 neutralization. J Mol Biol 375: 969–978. doi: 10.1016/j.jmb.2007.11.013
[21]
Burke V, Williams C, Sukumaran M, Kim SS, Li H, et al. (2009) Structural basis of the cross-reactivity of genetically related human anti-HIV-1 mAbs: implications for design of V3-based immunogens. Structure 17: 1538–1546. doi: 10.1016/j.str.2009.09.012
[22]
Dhillon AK, Stanfield RL, Gorny MK, Williams C, Zolla-Pazner S, et al. (2008) Structure determination of an anti-HIV-1 Fab 447–52D-peptide complex from an epitaxially twinned data set. Acta Crystallogr D Biol Crystallogr D64: 792–802. doi: 10.1107/s0907444908013978
[23]
Jiang X, Burke V, Totrov M, Williams C, Cardozo T, et al. (2010) Conserved structural elements in the V3 crown of HIV-1 gp120. Nat Struct Mol Biol 17: 955–961. doi: 10.1038/nsmb.1861
[24]
Stanfield RL, Gorny MK, Williams C, Zolla-Pazner S, Wilson IA (2004) Structural rationale for the broad neutralization of HIV-1 by human monoclonal antibody 447–52D. Structure 12: 193–204. doi: 10.1016/j.str.2004.01.003
[25]
Stanfield RL, Gorny MK, Zolla-Pazner S, Wilson IA (2006) Crystal structures of human immunodeficiency virus type 1 (HIV-1) neutralizing antibody 2219 in complex with three different V3 peptides reveal a new binding mode for HIV-1 cross-reactivity. J Virol 80: 6093–6105. doi: 10.1128/jvi.00205-06
[26]
Krachmarov CP, Honnen WJ, Kayman SC, Gorny MK, Zolla-Pazner S, et al. (2006) Factors determining the breadth and potency of neutralization by V3-specific human monoclonal antibodies derived from subjects infected with clade A or clade B strains of human immunodeficiency virus type 1. J Virol 80: 7127–7135. doi: 10.1128/jvi.02619-05
[27]
Pinter A, Honnen WJ, He Y, Gorny MK, Zolla-Pazner S, et al. (2004) The V1/V2 domain of gp120 is a global regulator of the sensitivity of primary human immunodeficiency virus type 1 isolates to neutralization by antibodies commonly induced upon infection. J Virol 78: 5205–5215. doi: 10.1128/jvi.78.10.5205-5215.2004
[28]
Cheng T, Li X, Li Y, Liu Z, Wang R (2009) Comparative assessment of scoring functions on a diverse test set. J Chem Inf Model 49: 1079–1093. doi: 10.1021/ci9000053
[29]
Hemelaar J, Gouws E, Ghys PD, Osmanov S (2011) Global trends in molecular epidemiology of HIV-1 during 2000–2007. AIDS 25: 679–689. doi: 10.1097/qad.0b013e328342ff93
[30]
Hemelaar J, Gouws E, Ghys PD, Osmanov S (2006) Global and regional distribution of HIV-1 genetic subtypes and recombinants in 2004. AIDS 20: W13–23. doi: 10.1097/01.aids.0000247564.73009.bc
[31]
Edlefsen PT, Gilbert PB, Rolland M (2013) Sieve analysis in HIV-1 vaccine efficacy trials. Current opinion in HIV and AIDS 8: 432–436. doi: 10.1097/coh.0b013e328362db2b
[32]
Buchacher A, Predl R, Strutzenberger K, Steinfellner W, Trkola A, et al. (1994) Generation of human monoclonal antibodies against HIV-1 proteins; electrofusion and Epstein-Barr virus transformation for peripheral blood lymphocyte immortalization. AIDS research and human retroviruses 10: 359–369. doi: 10.1089/aid.1994.10.359
[33]
Walker LM, Huber M, Doores KJ, Falkowska E, Pejchal R, et al. (2011) Broad neutralization coverage of HIV by multiple highly potent antibodies. Nature 477: 466–470. doi: 10.1038/nature10373
[34]
Zhou T, Georgiev I, Wu X, Yang ZY, Dai K, et al. (2010) Structural basis for broad and potent neutralization of HIV-1 by antibody VRC01. Science 329: 811–817. doi: 10.1126/science.1192819
[35]
Krachmarov CP, Kayman SC, Honnen WJ, Trochev O, Pinter A (2001) V3-specific polyclonal antibodies affinity purified from sera of infected humans effectively neutralize primary isolates of human immunodeficiency virus type 1. AIDS Res Hum Retroviruses 17: 1737–1748. doi: 10.1089/08892220152741432
[36]
Abagyan R, Totrov M (1994) Biased probability Monte Carlo conformational searches and electrostatic calculations for peptides and proteins. Journal of molecular biology 235: 983–1002. doi: 10.1006/jmbi.1994.1052
[37]
Bordner AJ, Abagyan R (2006) Ab initio prediction of peptide-MHC binding geometry for diverse class I MHC allotypes. Proteins 63: 512–526. doi: 10.1002/prot.20831
[38]
Abagyan R, Totrov M, Kuznetsov D (1994) Icm - a New Method for Protein Modeling and Design - Applications to Docking and Structure Prediction from the Distorted Native Conformation. Journal of Computational Chemistry 15: 488–506. doi: 10.1002/jcc.540150503
[39]
Fawcett T (2003) ROC Graphs: Notes and Practical Considerations for Researchers. HP Laboratories. Available: http://www.hpl.hp.com/techreports/2003/H?PL-2003-4.html. Accessed 2013 June 25.
[40]
Harrell FE Jr, Lee KL, Mark DB (1996) Multivariable prognostic models: issues in developing models, evaluating assumptions and adequacy, and measuring and reducing errors. Stat Med 15: 361–387. doi: 10.1002/(sici)1097-0258(19960229)15:4<361::aid-sim168>3.0.co;2-4
[41]
Weiss SM, Kulikowski CA (1991) Computer systems that learn : classification and prediction methods from statistics, neural nets, machine learning, and expert systems. San Mateo, Calif.: M. Kaufmann Publishers. xii, 223 p.
[42]
Lee AJ (1990) U-statistics: theory and practice. New York: Marcel Dekker, Inc.