[1] | Kaplan DL (1998) Molluscs shell structure: novel design strategies for synthetic materials. Curr Opin Solid State Mater Sci 3: 232–236.
|
[2] | De Paula SM, Huila MFG, Araki K, Toma HE (2010) Confocal Raman and electronic microscopy studies on the topotactic conversion of calcium carbonate from Pomacea lineata shells into hydroxyapatite bioceramic materials in phosphate media. Micron 41: 983–989. doi: 10.1016/j.micron.2010.06.014
|
[3] | Westbroek P, Marin F (1998) A marriage of bone and nacre. Nature 392: 861–862. doi: 10.1038/31798
|
[4] | Lamghari M, Almeida MJ, Berland S, Huet H, Laurent A, Millet C, Lopez E (1999) Stimulation of bone marrow cells and bone formation by nacre: in vivo and in vitro studies. Bone 25: 91–94. doi: 10.1016/s8756-3282(99)00141-6
|
[5] | Liao H, Mutvei H, Sj?str?m M, Hammarstr?m L, Li J (2000) Tissue responses to natural aragonite (Margaritifera shell) implants in vivo. Biomaterials 21: 457–468. doi: 10.1016/s0142-9612(99)00184-2
|
[6] | Berland S, Delattre O, Borzeix S, Catonné Y, Lopez E (2005) Nacre/bone interface changes in durable nacre endosseous implants in sheep. Biomaterials 26: 2767–2773. doi: 10.1016/j.biomaterials.2004.07.019
|
[7] | Taylor JD, Kennedy WJ, Hall A (1969) Shell structure and mineralogy of the Bivalvia: Introduction Nuculacea-Trigonacea. Bull Br Mus Nat Hist Zool, Suppl. 3: 1–125.
|
[8] | Taylor JD, Kennedy WJ, Hall AD (1973) The shell structure and mineralogy of the Bivalvia. II. Lucinacea-Clavagellacea, Conclusions. Bull Br Mus Nat Hist Zool 22: 225–294.
|
[9] | Carter JG (1990) Chapter 10. Evolutionary significance of shell microstructure in the Palaeotaxodonta, Pteriomorphia and Isofilibranchia (Bivalvia: Mollusca). In: Carter JG editor. Skeletal Biomineralization: Patterns, Processes and Evolutionary Trends, Vol I. New York: Van Nostrand Reinhold. 135–296.
|
[10] | Taylor JD, Layman M (1972) The mechanical properties of bivalve (Mollusca) shell structures. Palaeontology 15: 73–87.
|
[11] | Harper EM, Palmer TJ, Alphey JR (1997) Evolutionary response by bivalves to changing Phanerozoic sea-water chemistry. Geol Mag 134: 403–407.
|
[12] | Esteban-Delgado FJ, Harper EM, Checa AG, Rodríguez-Navarro AB (2008) Origin and expansion of foliated microstructure in pteriomorph Bivalves. Biol Bull 214: 153–165. doi: 10.2307/25066672
|
[13] | Grégoire C (1972) Structure of the molluscan shell. In: Florkin M, Scheer BT editors. Chemical Zoology. VIII. Mollusca. New York: Academic Press. 45–101.
|
[14] | Wilbur KM (1972) Shell formation in mollusks. In: Florkin M, Scheer BT editors. Chemical Zoology. VIII. Mollusca, New York: Academic Press. 103–145.
|
[15] | Lowenstam HA, Weiner S (1989) On Biomineralization. Oxford: Oxford University Press.
|
[16] | Weiner S, Dove PM (2003) An overview of biomineralization processes and the problem of the vital effect. In: Washington: Mineralogical Society of America and Geochemical Society Dove PM, De Yoreo JJ, Weiner S, editors. Biomineralization. Reviews in Mineralogy and Biochemistry 54. 54: 1–29.
|
[17] | Addadi L, Weiner S, Geva M (2001) On how proteins interact with crystals and their effect on crystal formation. Z Kardiol 90 Suppl 392–98. doi: 10.1007/s003920170049
|
[18] | Addadi L, Joester D, Nudelman F, Weiner S (2006) Mollusk shell formation: a source of new concepts for understanding biomineralization processes. Chem Eur J 12: 980–987. doi: 10.1002/chem.200500980
|
[19] | Marin F, Luquet G (2004) Molluscan shell proteins. C R Palevol 3: 469–492. doi: 10.1016/j.crpv.2004.07.009
|
[20] | Suzuki M, Saruwatari K, Kogure T, Yamamoto Y, Nishimura T, Kato T, Nagasawa H (2009) An acidic matrix protein, Pif, is the key macromolecule for nacre formation. Science 325: 1388–1390. doi: 10.1126/science.1173793
|
[21] | Taylor JD (1969) KennedyWJ (1969) The influence of the periostracum on the shell structure of bivalve molluscs. Calcif Tissue Res 3: 274–283. doi: 10.1007/bf02058669
|
[22] | Clark GR (1976) Shell growth in the marine environment: approaches to the problem of marginal calcification. Amer Zool 16: 981–992. doi: 10.1093/icb/16.3.617
|
[23] | Harper EM (1997) The molluscan periostracum: an important constraint in bivalve evolution. Palaeontology 40: 71–97.
|
[24] | Checa A (2000) A new model for periostracum and shell formation in Unionidae (Bivalvia: Mollusca). Tissue Cell 32: 405–416. doi: 10.1054/tice.2000.0129
|
[25] | Tevesz MJC, Carter JG (1980) Environmental relationships of shell form and structure of unionacean bivalves. In: Rhoads DC, Lutz RA editors. Skeletal Growth of Aquatic Organisms: Biological record of environmental change. New York: Plenum Press. 295–322.
|
[26] | Bottjer DJ (1981) Periostracum of the gastropod Fusitriton oregonensis: natural inhibitor of boring and encrusting organisms. Bull Mar Sci 31: 916–921.
|
[27] | Harper EM, Skelton PW (1993) The Mesozoic Marine Revolution and epifaunal bivalves. Scr Geol Spec Issue 2: 128–153.
|
[28] | Carter JG, Aller RC (1975) Calcification in the bivalve periostracum. Lethaia 8: 315–320. doi: 10.1111/j.1502-3931.1975.tb00936.x
|
[29] | Bottjer DJ, Carter JG (1980) Functional and phylogenetic significance of projecting periostracal structures in the Bivalvia (Mollusca). J Paleontol 54: 200–216.
|
[30] | Saleuddin ASM, Petit HP (1983) The mode of formation and the structure of the periostracum. In: Saleuddin ASM, Wilbur KM editors. The Mollusca. Vol. 4: Physiology Part I. New York: Academic Press. 199–234.
|
[31] | Taylor JD, Glover EA, Peharda M, Bigatti G, Ball A (2004) Extraordinary flexible shell sculpture; the structure and formation of calcified periostracal lamellae in Lucina pensylvanica (Bivalvia: Lucinidae). Malacologia 46: 277–294.
|
[32] | Harper EM, Checa AG, Rodríguez-Navarro AB (2009) Organization and mode of secretion of the granular prismatic microstructure of Entodesma navicula (Bivalvia: Mollusca). Acta Zool 90: 132–141. doi: 10.1111/j.1463-6395.2008.00338.x
|
[33] | Glover EA, Taylor JD (2010) Needles and pins: acicular crystalline periostracal calcification in venerid bivalves (Bivalvia: Veneridae). J Moll Stud 76: 157–179. doi: 10.1093/mollus/eyp054
|
[34] | Checa A, Harper EM (2010) Spikey bivalves: intra-periostracal crystal growth in anomalodesmatans. Biol Bull 219: 231–248.
|
[35] | Checa AG, Harper EM (2012) Periostracal mineralization in the gastrochaenid bivalve Spengleria. Acta Zool (published online 20 Dec 2012).
|
[36] | Zieritz A, Checa AG, Aldridge DC, Harper EM (2011) Variability, function and phylogenetic significance of periostracal microprojections in unionoid bivalves (Mollusca). J Zool Syst Evol Res 49: 6–15. doi: 10.1111/j.1439-0469.2010.00583.x
|
[37] | Carter JG (1978) Ecology and evolution of the Gastrochaenacea (Mollusca, Bivalvia) with notes on the evolution of the endolithic habitat. Bull Peabody Mus Nat Hist 41: 1–92.
|
[38] | Liljedahl L (1992) Silurozodus new genus, the oldest known member of the Trigonoida (Bivalvia, Mollusca). Pal?ont Z 66: 51–65. doi: 10.1007/bf02989477
|
[39] | Tevesz MJS (1975) Structure and habits of the ‘living fossil’ pelecypod Neotrigonia. Lethaia 8, 321–327.
|
[40] | Fortey R (2011) Survivors: The animals and plants that time has left behind. London: Harper Press. 400 p.
|
[41] | Fleming CA (1964) History of the bivalve family Trigoniidae in the south-west Pacific. Australian J Sci 26: 196–203.
|
[42] | Darragh TA (1986) The Cainozoic Trigoniidae of Australia. Alcheringa 10: 1–34. doi: 10.1080/03115518608619039
|
[43] | Glavinic A, Rousse G, Benkendorff K (2006) Species delimitation and phylogeography of Neotrigonia sp. in southern Australian seas. In: Malchus N, Pons JM editors. Abstracts and Posters of the International Congress of Malacology. Org Divers Evol 6, Electr Suppl 16. 37.
|
[44] | Glavinic A (2010) Systematics, phylogeny, phylogeography and reproduction of Neotrigonia (Bivalvia: Palaeoheterodonta). Adelaide: Flinders University Ph D Thesis. 204 p.
|
[45] | Giribet G, Distel DI (2003) Bivalve phylogeny and molecular data. In: Lydeard C, Lindberg CR editors. Molecular Systematics and Phylogeography of Mollusks. Washington: Smithsonian Books. 45–90.
|
[46] | Taylor JD, Williams ST, Glover E, Dyal P (2007) A molecular phylogeny of heterodont bivalves (Mollusca: Bivalvia: Heterodonta): new analyses of 18S and 28S rRNA genes. Zool Scr 36: 587–606. doi: 10.1111/j.1463-6409.2007.00299.x
|
[47] | Sharma PP, González VL, Kawauchi GY, Andrade SCS, Guzmán A, Collins TM, Glover EA, Harper EM, Healy JM, Mikkelsen PM, Taylor JD, Bieler R, Giribet G (2012) Phylogenetic analysis of four nuclear protein-encoding genes largely corroborates the traditional classification of Bivalvia (Mollusca). Mol Phylog Evol 65, 64–74.
|
[48] | Wilson NG, Rouse GW, Giribet G (2010) Assessing the molluscan hypothesis Serialia (Monoplacophora+Polyplacophora) using novel molecular data. Mol Phylog Evol 54: 187–193. doi: 10.1016/j.ympev.2009.07.028
|
[49] | Stanley SM (1977) Coadaptation in the Trigoniidae, a remarkable family of burrowing bivalves. Palaeontology 20: 869–899.
|
[50] | Morton B (1987) The functional morphology of Neotrigonia margaritacea (Bivalvia: Trigoniacea), with a discussion of phylogenetic affinities. Rec Australian Mus 39: 339–354. doi: 10.3853/j.0067-1975.39.1987.173
|
[51] | Stanley SM (1984) Neotrigonia, the sole surviving genus of the Trigoniidae (Bivalvia, Mollusca. In: Eldredge N, Stanley SM editors. Living Fossils. New York: Springer Verlag. 243–246.
|
[52] | Ben Mlih A (1983) Organization de la phase carbonatée dans les prismes de Neotrigonia margaritacea Lmk. C R Acad Sci Paris sér 3 296: 313–318.
|
[53] | Newell ND, Boyd DW (1975) Parallel evolution in early trigonioidean bivalves. Bull Am Mus Nat Hist 154: 55–162.
|
[54] | Neumann M, Gabel D (2002) Simple method for reduction of autofluorescence in fluorescence microscopy. J Histochem Cytochem 50: 437–439. doi: 10.1177/002215540205000315
|
[55] | Mutvei H (1977) The nacreous layer in Mytilus, Nucula and Unio (Bivalvia). Calcif Tissue Res 24: 11–18. doi: 10.1007/bf02223291
|
[56] | Mutvei H (1978) Ultrastructural characteristics of the nacre in some gastropods. Zool Scr 7: 287–296. doi: 10.1111/j.1463-6409.1978.tb00612.x
|
[57] | Checa AG, Sánchez-Navas A, Rodríguez-Navarro A (2009) Crystal growth in the foliated aragonite of monoplacophorans (Mollusca). Cryst Growth Des 9: 4574–4580. doi: 10.1021/cg9005949
|
[58] | Wang SN, Yan XH, Wang R, Yu DH, Wang XX (2013) A microstructural study of individual nacre tablet of Pinctada maxima. J Struct Biol 183: 404–411. doi: 10.1016/j.jsb.2013.07.013
|
[59] | Checa AG, Mutvei H, Osuna-Mascaró AJ, Bonarski JT, Faryna M, Berent K, Pina CM, Rousseau M, Macías-Sánchez E (2013) Crystallographic control on the substructure of nacre tablets. J Struct Biol 183: 368–376. doi: 10.1016/j.jsb.2013.07.014
|
[60] | Cartwright JHE, Checa AG, Gale JD, Gebauer D, Sainz-Díaz CI (2012) Calcium carbonate polyamorphism and its role in biomineralization: How many amorphous calcium carbonates are there? Angew Chem Int Ed 51: 2–13. doi: 10.1002/anie.201203125
|
[61] | Jaiswal JK, Andrews N, Simon SM (2002) Membrane proximal lysosomes are the major vesicles responsible for calcium-dependent exocytosis in nonsecretory cells. J Cell Biol 159: 625–635. doi: 10.1083/jcb.200208154
|
[62] | Beedham GE, Trueman ER (1968) The cuticle of the Aplacophora and its evolutionary significance in the Mollusca. J Zool 154: 443–451. doi: 10.1111/j.1469-7998.1968.tb01676.x
|
[63] | Ramalingam K, Ravindranath MH (1970) Histochemical significance of green metachromasia to toluidine blue. Histochemie 24: 322–327.
|
[64] | Sridharan G, Shankar AA (2012) Toluidine blue: A review of its chemistry and clinical utility. J Oral Maxillofac Pathol 16: 251–255. doi: 10.4103/0973-029x.99081
|
[65] | Wilbur KM, Saleuddin ASM (1983) Shell formation. In: Saleuddin ASM, Wilbur KM editors. The Mollusca, vol 4, Physiology, part 1. New York: Academic Press. 235–287.
|
[66] | Salas C, Marina P, Checa AG, Rueda JL (2012) The periostracum of Digitaria digitaria (Bivalvia: Astartidae): formation and structure. J Moll Stud 78, 34–43.
|
[67] | Yonge CM (1957) Mantle fusion in the Lamellibranchia. Pubbl Stazione Zool Napoli 29: 151–171.
|
[68] | Yonge CM (1982) Mantle margins with a revision of siphonal types in the Bivalvia. J Moll Stud 48: 102–103.
|
[69] | Richardson CA, Runham NW, Crisp DJ (1981) A histological and ultrastructural study of the cells of the mantle edge of a marine bivalve, Cerastoderma edule. Tissue Cell 13: 715–730. doi: 10.1016/s0040-8166(81)80008-0
|
[70] | Kawaguti S, Ikemoto N (1962) Electron microscopy on the mantle of a bivalve, Fabulina nitida. Biol J Okayama Univ 8: 1–20.
|
[71] | Bevelander G, Nakahara H (1967) An electron microscopy study of the formation of the periostracum of Macrocallista maculata. Calcif Tissue Res 1: 55–67. doi: 10.1007/bf02008075
|
[72] | Neff JM (1972) Ultrastructure studies of periostracum formation in the hard shelled clam Mercenaria mercenaria (L.). Tissue Cell 4: 311–326. doi: 10.1016/s0040-8166(72)80050-8
|
[73] | Bubel A (1973a) An electron-microscope study of periostracum formation in some marine bivalves. I. The origin of the periostracum. Mar Biol 20: 213–221.
|
[74] | Saleuddin ASM (1974) An electron microscopic study of the formation and structure of the periostracum in Astarte (Bivalvia). Can J Zool 52: 1463–1471. doi: 10.1139/z74-188
|
[75] | Bubel A (1973b) An electron-microscope study of periostracum formation in some marine bivalves. II. The cells lining the periostracal groove. Mar Biol 20: 222–234.
|
[76] | Prezant RS (1979) Shell spinules of the bivalve Lyonsia hyalina (Bivalvia: Anomalodesmata). Nautilus 93: 93–95.
|
[77] | Ubukata T (1994) Architectural constraints on the morphogenesis of prismatic sculpture in Bivalvia. Palaeontology 37: 241–261.
|
[78] | Checa A, Rodríguez-Navarro A (2001) Geometrical and crystallographic constraints determine the self-organization of shell microstructures in Unionidae (Bivalvia: Mollusca). Proc R Soc London B 268: 771–778. doi: 10.1098/rspb.2000.1415
|
[79] | Bengtson S (1994) The advent of animal skeletons. In: Bengtson S editor. Early Life on Earth, Nobel Symposium 84. New York: Columbia University Press. 412–425.
|
[80] | Wood R, Zhuravlev AY (2012) Escalation and ecological selectivity of mineralogy in the Cambrian radiation of skeletons. Earth Sci Rev 115: 249–261. doi: 10.1016/j.earscirev.2012.10.002
|
[81] | Vinther J (2009) The canal system in sclerites of Lower Cambrian Sinosachites (Halkieriidae: Sachitida): Significance for the molluscan affinites of the sachitids. Palaeontology 52: 689–712. doi: 10.1111/j.1475-4983.2009.00881.x
|