全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2014 

Escherichia coli and Candida albicans Induced Macrophage Extracellular Trap-Like Structures with Limited Microbicidal Activity

DOI: 10.1371/journal.pone.0090042

Full-Text   Cite this paper   Add to My Lib

Abstract:

The formation of extracellular traps (ETs) has recently been recognized as a novel defense mechanism in several types of innate immune cells. It has been suggested that these structures are toxic to microbes and contribute significantly to killing several pathogens. However, the role of ETs formed by macrophages (METs) in defense against microbes remains little known. In this study, we demonstrated that a subset of murine J774A.1 macrophage cell line (8% to 17%) and peritoneal macrophages (8.5% to 15%) form METs-like structures (METs-LS) in response to Escherichia coli and Candida albicans challenge. We found only a portion of murine METs-LS, which are released by dying macrophages, showed detectable killing effects on trapped E. coli but not C. albicans. Fluorescence and scanning electron microscopy analyses revealed that, in vitro, both microorganisms were entrapped in J774A.1 METs-LS composed of DNA and microbicidal proteins such as histone, myeloperoxidase and lysozyme. DNA components of both nucleus and mitochondrion origins were detectable in these structures. Additionally, METs-LS formation occurred independently of ROS produced by NADPH oxidase, and this process did not result in cell lysis. In summary, our results emphasized that microbes induced METs-LS in murine macrophage cells and that the microbicidal activity of these METs-LS differs greatly. We propose the function of METs-LS is to contain invading microbes at the infection site, thereby preventing the systemic diffusion of them, rather than significantly killing them.

References

[1]  MacMicking J, Xie Q-W, Nathan C (1997) Nitric oxide and macrophage function Annual Review of Immunology. 15: 323–350. doi: 10.1146/annurev.immunol.15.1.323
[2]  Plowden J, Renshaw-Hoelscher M, Engleman C, Katz J, Sambhara S (2004) Innate immunity in aging: impact on macrophage function. Aging Cell 3: 161–167. doi: 10.1111/j.1474-9728.2004.00102.x
[3]  Cutler JE (1991) Putative Virulence Factors of Candida albicans. Annual Review of Microbiology 45: 187–218. doi: 10.1146/annurev.micro.45.1.187
[4]  Benoit M, Desnues B, Mege J-L (2008) Macrophage Polarization in Bacterial Infections. The Journal of Immunology 181: 3733–3739. doi: 10.4049/jimmunol.181.6.3733
[5]  Brinkmann V, Reichard U, Goosmann C, Fauler B, Uhlemann Y, et al. (2004) Neutrophil Extracellular Traps Kill Bacteria. Science 303: 1532–1535. doi: 10.1126/science.1092385
[6]  Yousefi S, Gold JA, Andina N, Lee JJ, Kelly AM, et al. (2008) Catapult-like release of mitochondrial DNA by eosinophils contributes to antibacterial defense. Nat Med 14: 949–953. doi: 10.1038/nm.1855
[7]  von K?ckritz-Blickwede M, Goldmann O, Thulin P, Heinemann K, Norrby-Teglund A, et al. (2008) Phagocytosis-independent antimicrobial activity of mast cells by means of extracellular trap formation. Blood 111: 3070–3080. doi: 10.1182/blood-2007-07-104018
[8]  Chow OA, von K?ckritz-Blickwede M, Bright AT, Hensler ME, Zinkernagel AS, et al. (2010) Statins Enhance Formation of Phagocyte Extracellular Traps. Cell Host & Microbe 8: 445–454. doi: 10.1016/j.chom.2010.10.005
[9]  Ermert D, Urban CF, Laube B, Goosmann C, Zychlinsky A, et al. (2009) Mouse Neutrophil Extracellular Traps in Microbial Infections. Journal of Innate Immunity 1: 181–193. doi: 10.1159/000205281
[10]  Lippolis JD, Reinhardt TA, Goff JP, Horst RL (2006) Neutrophil extracellular trap formation by bovine neutrophils is not inhibited by milk. Veterinary Immunology and Immunopathology 113: 248–255. doi: 10.1016/j.vetimm.2006.05.004
[11]  Alghamdi AS, Foster DN (2005) Seminal DNase Frees Spermatozoa Entangled in Neutrophil Extracellular Traps. Biology of Reproduction 73: 1174–1181. doi: 10.1095/biolreprod.105.045666
[12]  Pali? D, Ostoji? J, Andreasen CB, Roth JA (2007) Fish cast NETs: Neutrophil extracellular traps are released from fish neutrophils. Developmental & Comparative Immunology 31: 805–816. doi: 10.1016/j.dci.2006.11.010
[13]  Kessenbrock K, Krumbholz M, Schonermarck U, Back W, Gross WL, et al. (2009) Netting neutrophils in autoimmune small-vessel vasculitis. Nat Med 15: 623–625. doi: 10.1038/nm.1959
[14]  Urban CF, Ermert D, Schmid M, Abu-Abed U, Goosmann C, et al. (2009) Neutrophil Extracellular Traps Contain Calprotectin, a Cytosolic Protein Complex Involved in Host Defense against Candida albicans. PLoS Pathog 5: e1000639. doi: 10.1371/journal.ppat.1000639
[15]  Papayannopoulos V, Zychlinsky A (2009) NETs: a new strategy for using old weapons. Trends in Immunology 30: 513–521. doi: 10.1016/j.it.2009.07.011
[16]  Pilsczek FH, Salina D, Poon KKH, Fahey C, Yipp BG, et al. (2010) A Novel Mechanism of Rapid Nuclear Neutrophil Extracellular Trap Formation in Response to Staphylococcus aureus. The Journal of Immunology 185: 7413–7425. doi: 10.4049/jimmunol.1000675
[17]  Urban CF, Reichard U, Brinkmann V, Zychlinsky A (2006) Neutrophil extracellular traps capture and kill Candida albicans yeast and hyphal forms. Cellular Microbiology 8: 668–676. doi: 10.1111/j.1462-5822.2005.00659.x
[18]  Bruns S, Kniemeyer O, Hasenberg M, Aimanianda V, Nietzsche S, et al. (2010) Production of Extracellular Traps against Aspergillus fumigatus In Vitro and in Infected Lung Tissue Is Dependent on Invading Neutrophils and Influenced by Hydrophobin RodA. PLoS Pathog 6: e1000873. doi: 10.1371/journal.ppat.1000873
[19]  Guimar?es-Costa AB, Nascimento MTC, Froment GS, Soares RPP, Morgado FN, et al. (2009) Leishmania amazonensis promastigotes induce and are killed by neutrophil extracellular traps. Proceedings of the National Academy of Sciences 106: 6748–6753. doi: 10.1073/pnas.0900226106
[20]  Behrendt JH, Ruiz A, Zahner H, Taubert A, Hermosilla C (2010) Neutrophil extracellular trap formation as innate immune reactions against the apicomplexan parasite Eimeria bovis. Veterinary Immunology and Immunopathology 133: 1–8. doi: 10.1016/j.vetimm.2009.06.012
[21]  Fuchs TA, Abed U, Goosmann C, Hurwitz R, Schulze I, et al. (2007) Novel cell death program leads to neutrophil extracellular traps. The Journal of Cell Biology 176: 231–241. doi: 10.1083/jcb.200606027
[22]  Yousefi S, Mihalache C, Kozlowski E, Schmid I, Simon HU (2009) Viable neutrophils release mitochondrial DNA to form neutrophil extracellular traps. Cell Death Differ 16: 1438–1444. doi: 10.1038/cdd.2009.96
[23]  Remijsen Q, Berghe TV, Wirawan E, Asselbergh B, Parthoens E, et al. (2010) Neutrophil extracellular trap cell death requires both autophagy and superoxide generation. Cell Res 21: 290–304. doi: 10.1038/cr.2010.150
[24]  Bianchi M, Hakkim A, Brinkmann V, Siler U, Seger RA, et al. (2009) Restoration of NET formation by gene therapy in CGD controls aspergillosis. Blood 114: 2619–2622. doi: 10.1182/blood-2009-05-221606
[25]  Gabriel C, McMaster WR, Girard D, Descoteaux A (2010) Leishmania donovani Promastigotes Evade the Antimicrobial Activity of Neutrophil Extracellular Traps. The Journal of Immunology 185: 4319–4327. doi: 10.4049/jimmunol.1000893
[26]  Byrd AS, O’Brien XM, Johnson CM, Lavigne LM, Reichner JS (2013) An Extracellular Matrix–Based Mechanism of Rapid Neutrophil Extracellular Trap Formation in Response to Candida albicans. The Journal of Immunology 190: 4136–4148. doi: 10.4049/jimmunol.1202671
[27]  Parker H, Dragunow M, Hampton MB, Kettle AJ, Winterbourn CC (2012) Requirements for NADPH oxidase and myeloperoxidase in neutrophil extracellular trap formation differ depending on the stimulus. Journal of Leukocyte Biology 92: 841–849. doi: 10.1189/jlb.1211601
[28]  Mohanan S, Horibata S, McElwee JL, Dannenberg AJ, Coonrod SA (2013) Identification of macrophage extracellular trap-like structures in mammary gland adipose tissue: a preliminary study. Frontiers in Immunology 4.
[29]  Aulik NA, Hellenbrand KM, Czuprynski CJ (2012) Mannheimia haemolytica and its leukotoxin causes macrophage extracellular trap (MET) formation by bovine macrophages. Infection and Immunity 80: 1923–1933. doi: 10.1128/iai.06120-11
[30]  Hellenbrand KM, Forsythe KM, Rivera-Rivas JJ, Czuprynski CJ, Aulik NA (2013) Histophilus somni causes extracellular trap formation by bovine neutrophils and macrophages. Microbial Pathogenesis 54: 67–75. doi: 10.1016/j.micpath.2012.09.007
[31]  Wong K-W, Jacobs WR (2013) Mycobacterium tuberculosis Exploits Human Interferon γ to Stimulate Macrophage Extracellular Trap Formation and Necrosis. Journal of Infectious Diseases 208: 109–119. doi: 10.1093/infdis/jit097
[32]  Menegazzi R, Decleva E, Dri P (2012) Killing by neutrophil extracellular traps: fact or folklore? Blood 119: 1214–1216. doi: 10.1182/blood-2011-07-364604
[33]  Banning N, Toze S, Mee BJ (2002) Escherichia coli survival in groundwater and effluent measured using a combination of propidium iodide and the green fluorescent protein. Journal of Applied Microbiology 93: 69–76. doi: 10.1046/j.1365-2672.2002.01670.x
[34]  Alby K, Schaefer D, Sherwood RK, Jones SK, Bennett RJ (2010) Identification of a Cell Death Pathway in Candida albicans during the Response to Pheromone. Eukaryotic Cell 9: 1690–1701. doi: 10.1128/ec.00155-10
[35]  Young RL, Malcolm KC, Kret JE, Caceres SM, Poch KR, et al. (2011) Neutrophil Extracellular Trap (NET)-Mediated Killing of Pseudomonas aeruginosa: Evidence of Acquired Resistance within the CF Airway, Independent of CFTR. PLoS ONE 6: e23637. doi: 10.1371/journal.pone.0023637
[36]  Rose FRAJ, Bailey K, Keyte JW, Chan WC, Greenwood D, et al. (1998) Potential Role of Epithelial Cell-Derived Histone H1 Proteins in Innate Antimicrobial Defense in the Human Gastrointestinal Tract. Infection and Immunity 66: 3255–3263.
[37]  Brinkmann V, Zychlinsky A (2007) Beneficial suicide: why neutrophils die to make NETs. Nat Rev Micro 5: 577–582. doi: 10.1038/nrmicro1710
[38]  McCormick A, Heesemann L, Wagener J, Marcos V, Hartl D, et al. (2010) NETs formed by human neutrophils inhibit growth of the pathogenic mold Aspergillus fumigatus. Microbes and Infection 12: 928–936. doi: 10.1016/j.micinf.2010.06.009
[39]  Mège J-L, Mehraj V, Capo C (2011) Macrophage Polarization and Bacterial Infections. Current Opinion in Infectious Diseases 24: 230–234. doi: 10.1097/qco.0b013e328344b73e
[40]  Charles A, Janeway Jr PT, Mark Walport, Shlomchik MJ, editors (2001) Immunobiology: The Immune System in Health and Disease. 5th edition. ed. New York: Garland Science.
[41]  Gow NAR, van de Veerdonk FL, Brown AJP, Netea MG (2012) Candida albicans morphogenesis and host defence: discriminating invasion from colonization. Nat Rev Micro 10: 112–122. doi: 10.1038/nrmicro2711
[42]  Akong-Moore K, Chow OA, von K?ckritz-Blickwede M, Nizet V (2012) Influences of Chloride and Hypochlorite on Neutrophil Extracellular Trap Formation. PLoS ONE 7: e42984. doi: 10.1371/journal.pone.0042984
[43]  Clark SR, Ma AC, Tavener SA, McDonald B, Goodarzi Z, et al. (2007) Platelet TLR4 activates neutrophil extracellular traps to ensnare bacteria in septic blood. Nat Med 13: 463–469. doi: 10.1038/nm1565
[44]  Liu C, Tangsombatvisit S, Rosenberg J, Mandelbaum G, Gillespie E, et al. (2012) Specific post-translational histone modifications of neutrophil extracellular traps as immunogens and potential targets of lupus autoantibodies. Arthritis Research & Therapy 14: R25. doi: 10.1186/ar3707
[45]  Jann NJ, Schmaler M, Kristian SA, Radek KA, Gallo RL, et al. (2009) Neutrophil antimicrobial defense against Staphylococcus aureus is mediated by phagolysosomal but not extracellular trap-associated cathelicidin. Journal of Leukocyte Biology 86: 1159–1169. doi: 10.1189/jlb.0209053
[46]  Remijsen Q, Kuijpers TW, Wirawan E, Lippens S, Vandenabeele P, et al. (2011) Dying for a cause: NETosis, mechanisms behind an antimicrobial cell death modality. Cell Death Differ 18: 581–588. doi: 10.1038/cdd.2011.1
[47]  Tazzeo T, Worek F, Janssen LJ (2009) The NADPH oxidase inhibitor diphenyleneiodonium is also a potent inhibitor of cholinesterases and the internal Ca2+ pump. British Journal of Pharmacology 158: 790–796. doi: 10.1111/j.1476-5381.2009.00394.x
[48]  Dodd-o JM, Zheng G, Silverman HS, Lakatta EG, Ziegelstein RC (1997) Endothelium-independent relaxation of aortic rings by the nitric oxide synthase inhibitor diphenyleneiodonium. British Journal of Pharmacology 120: 857–864. doi: 10.1038/sj.bjp.0701014
[49]  Hosseinzadeh A, Messer PK, Urban CF (2012) Stable redox-cycling nitroxide Tempol inhibits NET formation. Frontiers in Immunology 3.
[50]  Aulik NA, Hellenbrand KM, Klos H, Czuprynski CJ (2010) Mannheimia haemolytica and Its Leukotoxin Cause Neutrophil Extracellular Trap Formation by Bovine Neutrophils. Infection and Immunity 78: 4454–4466. doi: 10.1128/iai.00840-10
[51]  Hellenbrand KM, Forsythe KM, Rivera-Rivas JJ, Czuprynski CJ, Aulik NA (2013) Histophilus somni causes extracellular trap formation by bovine neutrophils and macrophages. Microbial Pathogenesis 54: 67–75. doi: 10.1016/j.micpath.2012.09.007
[52]  Lin AM, Rubin CJ, Khandpur R, Wang JY, Riblett M, et al. (2011) Mast Cells and Neutrophils Release IL-17 through Extracellular Trap Formation in Psoriasis. The Journal of Immunology 187: 490–500. doi: 10.4049/jimmunol.1100123
[53]  Radic M, Marion T (2013) Neutrophil extracellular chromatin traps connect innate immune response to autoimmunity. Seminars in Immunopathology 35: 465–480. doi: 10.1007/s00281-013-0376-6
[54]  Kaplan MJ, Radic M (2012) Neutrophil Extracellular Traps: Double-Edged Swords of Innate Immunity. The Journal of Immunology 189: 2689–2695. doi: 10.4049/jimmunol.1201719

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133