[1] | Maurer WC (1980) Advanced drilling techniques. The Petroleum Publishing Company, Tulsa, Oklahoma.
|
[2] | Bar-Cohen Y, Zacny K (2009) Drilling in extreme environments. John Wiley & Sons.
|
[3] | Cooper GA (1994) Directional drilling. Sci Am 270: 56–61. doi: 10.1038/scientificamerican0594-82
|
[4] | Ylikorpi T, Visentin G, Suomela J (2001) A robotic rover-based deep driller for Mars exploration. Proc of 35th Aerospace Mechanisms Symp.
|
[5] | Zacny K, Paulsen G, Chu P, Avanesyan A, Craft J, et al. (2012) Mars drill for the Mars sample return mission with a brushing and abrading bit, regolith and powder bit, core PreView Bit and a coring bit. Proc of IEEE Aerospace Conf: 1–8.
|
[6] | K?mle N, Kaufmann E, Kargl G, Gao Y, Rui X (2008) Development of thermal sensors and drilling systems for lunar and planetary regoliths. Adv Space Res 42: 363–368. doi: 10.1016/j.asr.2007.02.088
|
[7] | Nagaoka K, Kubota T, Otsuki M, Tanaka S (2008) Experimental study on autonomous burrowing screw robot for subsurface exploration on the Moon. IEEE RSJ 2008: 4104–4109. doi: 10.1109/iros.2008.4650693
|
[8] | Mu?oz-Carpena R, Shukla S, Morgan K (2004) Field devices for monitoring soil water content. University of Florida Cooperative Extension Service, Institute of Food and Agricultural Sciences, EDIS.
|
[9] | Simon C, Goyallon D, Poloce JP, Sellami H, Gerbaud L, et al. (2007) Drilling without WOB, dream or reality? An effective field test by Total Angola. SPE/IADC Drilling Conf.
|
[10] | Zacny K, Quayle M, McFadden M, Neugebauer A, Huang K, et al. (2002) A novel method for cuttings removal from holes during percussive drilling on Mars. Revolutionary Aerospace Systems Concepts-Academic Linkage RASC-AL: 107–121.
|
[11] | Rykwalder PR, Blanford WJ (2005) Vadose zone monitoring techniques. Water Encyclopedia. John Wiley & Sons.
|
[12] | Bengough A, Mullins C (1990) The resistance experienced by roots growing in a pressurised cell. Plant and Soil 123: 73–82.
|
[13] | ASABE Standards, ASAE S313.3 (1999) Soil cone penetrometer. St. Joseph, MI, USA.
|
[14] | Lunne T, Berre T, Strandvik S (1997) Sample disturbance effects in soft low plastic Norwegian clay. Symp on Recent Developments in Soil and Pavement Mechanics: 81–102.
|
[15] | Fitzgerald M, Elsworth D (2010) Evolution of the pore-pressure field around a moving conical penetrometer of finite size. J Eng Mech 136(3): 263–272. doi: 10.1061/(asce)0733-9399(2010)136:3(263)
|
[16] | Ani AO, Mbajiorgu CC, Akubuo CO, Onwualu PA (2011) Proctor cone penetrometer for in-situ soil strength studies in Nigeria. Int J Agric & Biol Eng 4(3): 16–25.
|
[17] | Herrick JE, Jones TL (2002) A dynamic cone penetrometer for measuring soil penetration resistance. Am J Soil Sci Society 66(4): 1320–1324. doi: 10.2136/sssaj2002.1320
|
[18] | Whiteley GM, Utomo WH, Dexter AR (1981) A comparison of penetrometer pressures and the pressures exerted by roots. Plant and Soil 61(3): 351–364. doi: 10.1007/bf02182016
|
[19] | Bengough AG, Mullins CE, Wilson G, Wallace J (1991) The design, construction and use of a rotating-tip penetrometer. J Agr Eng Res 48: 223–227. doi: 10.1016/0021-8634(91)80017-9
|
[20] | Tumay Kurup (2001) The design and operation of a novel miniature cone penetration test system. Electronic J of Geotechnical Eng 6.
|
[21] | Bar-Cohen Y (2006) Biomimetics - using nature to inspire human innovation. Bioinspir Biomim 1: 1–12. doi: 10.1088/1748-3182/1/1/p01
|
[22] | Gouachea TP, Gaoa Y, Costec P, Gourinatb Y (2011) First experimental investigation of dual-reciprocating drilling in planetary regoliths: proposition of penetration mechanics. Planetary Space Sci 59: 1529–1541. doi: 10.1016/j.pss.2011.06.019
|
[23] | Gao Y, Ellery A, Sweeting M, Vincent J (2007) Bioinspired drill for planetary sampling: literature survey, conceptual design, and feasibility study. J Spacecraft and Rockets 44: 703–709. doi: 10.2514/1.23025
|
[24] | Menon C, Vincent JFV, Lan N, Bilhaut L, Ellery A, et al. (2006) Bio-inspired micro-drills for future planetary exploration. Proc. of CANEUS Toulouse France.
|
[25] | Winter AG, Hosoi A (2011) Identification and evaluation of the Atlantic razor clam (Ensis directus) for biologically inspired subsea burrowing systems. Integrative and Comparative Biology 51: 151–157. doi: 10.1093/icb/icr038
|
[26] | Gilroy S, Masson PH (2008) Plant tropisms. Wiley Online Library.
|
[27] | Arnaud C, Bonnot C, Desnos T, Nussaume L (2010) The root cap at the forefront. Comptes Rendus Biologies 333: 335–343. doi: 10.1016/j.crvi.2010.01.011
|
[28] | Baluska F, Mancuso S, Volkmann D, Barlow PW (2010) Root apex transition zone: a signalling-response nexus in the root. Trends in Plant Science 15: 402–408. doi: 10.1016/j.tplants.2010.04.007
|
[29] | Bengough AG, Bransby MF, Hans J, McKenna SJ, Roberts TJ, et al. (2006) Root responses to soil physical conditions; growth dynamics from field to cell. J Exp Bot 57: 437. doi: 10.1093/jxb/erj003
|
[30] | Hochholdinger F, Tuberosa R (2009) Genetic and genomic dissection of maize root development and architecture. Curr Opin Plant Biol 12: 172–177. doi: 10.1016/j.pbi.2008.12.002
|
[31] | Zobel RW (1991) Root growth and development. The rhizosphere and plant growth. Springer: 61–71.
|
[32] | Darwin C (1880) The power of movement in plants. John Murray, London.
|
[33] | Inoue N, Arase T, Hagiwara M, Amano T, Hayashi T, et al. (1999) Ecological significance of root tip rotation for seedling establishment of Oryza sativa L. Ecol Res. 14: 31–38. doi: 10.1046/j.1440-1703.1999.141282.x
|
[34] | Brown AH (1993) Circumnutations: from Darwin to space flights. Plant Physiol 101: 345–348.
|
[35] | Vollsnes A, Futsaether C, Bengough A (2010) Quantifying rhizosphere particle movement around mutant maize roots using time lapse imaging and particle image velocimetry. Europ J Soil Sci 61: 926–939. doi: 10.1111/j.1365-2389.2010.01297.x
|
[36] | Verbelen J-P, De Cnodder T, Le J, Vissenberg K, Balu?ka F (2006) Root apex of Arabidopsis thaliana consists of four distinct zones of growth activities: meristematic zone, transition zone, fast elongation zone, and growth terminating zone. Plant Sig Behav 1: 296–304. doi: 10.4161/psb.1.6.3511
|
[37] | Dexter A (1987) Mechanics of root growth. Plant Soil 98: 303–312. doi: 10.1007/bf02378351
|
[38] | Baluska F, Mancuso S, Volkmann D, Barlow P (2004) Root apices as plant command centres: the unique ‘brain-like’ status of the root apex transition zone. Biologia 59: 7–19.
|
[39] | Ishikawa H, Evans ML (1995) Specialized zones of development in roots. Plant Physiol 109: 725.
|
[40] | Barlow PW (2002) The root cap: cell dynamics, cell differentiation and cap function. J Plant Growth Reg 21: 261–286. doi: 10.1007/s00344-002-0034-z
|
[41] | Barlow PW (1993) The response of roots and root systems to their environment–An interpretation derived from an analysis of the hierarchical organization of plant life. Env Exp Bot 33: 1–10. doi: 10.1016/0098-8472(93)90051-g
|
[42] | Unger PW, Kaspar TC (1994) Soil compaction and root growth: a review. Agronomy J 86: 759–766. doi: 10.2134/agronj1994.00021962008600050004x
|
[43] | Iijima M, Morita S, Barlow PW (2008) Structure and function of the root cap. Plant Production Sci 11: 17–27. doi: 10.1626/pps.11.17
|
[44] | Iijima M, Higuchi T, Barlow PW (2004) Contribution of root cap mucilage and presence of an intact root cap in maize (Zea mays) to the reduction of soil mechanical impedance. Annals of Bot 94: 473–477.
|
[45] | Tonazzini A, Popova L, Mattioli F, Mazzolai B (2012) Analysis and characterization of a robotic probe inspired by the plant root apex. IEEE BioRob 2012: 1134–1139. doi: 10.1109/biorob.2012.6290772
|
[46] | Tonazzini A, Sadeghi A, Popova L, Mazzolai B (2013) Plant root strategies for robotic soil penetration. Biomimetic and Biohybrid Systems: 447–449.
|
[47] | Schopfer P (2006) Biomechanics of plant growth. Am J of Bot 93: 1415–1425. doi: 10.3732/ajb.93.10.1415
|
[48] | Croser C, Bengough AG, Pritchard J (2000) The effect of mechanical impedance on root growth in pea (Pisum sativum). II. Cell expansion and wall rheology during recovery. Physiol Plantarum 109: 150–159. doi: 10.1034/j.1399-3054.2000.100207.x
|
[49] | Clark L, Whalley W, Barraclough P (2003) How do roots penetrate strong soil? Plant and Soil 255: 93–104. doi: 10.1023/a:1026140122848
|
[50] | Greacen E, Oh J (1972) Physics of root growth. Nature 235: 24–25. doi: 10.1038/newbio235024a0
|
[51] | Barley K, Greacen E (1967) Mechanical resistance as a soil factor influencing the growth of roots and underground shoots. Advances in Agronomy 19: 1–43. doi: 10.1016/s0065-2113(08)60731-2
|
[52] | Hawes MC, Bengough G, Cassab G, Ponce G (2002) Root caps and rhizosphere. J Plant Growth Reg 21: 352–367. doi: 10.1007/s00344-002-0035-y
|
[53] | Bengough A, McKenzie B (1997) Sloughing of root cap cells decreases the frictional resistance to maize (Zea mays L.) root growth. J Exp Bot 48: 885. doi: 10.1093/jxb/48.4.885
|
[54] | Iijima M, Higuchi T, Barlow PW, Bengough AG (2003) Root cap removal increases root penetration resistance in maize (Zea mays L.). J Exp Bot 54: 2105. doi: 10.1093/jxb/erg226
|
[55] | Bengough A, Kirby J (1999) Tribology of the root cap in maize (Zea mays) and peas (Pisum sativum). New phytologist 142: 421–425. doi: 10.1046/j.1469-8137.1999.00406.x
|
[56] | Goodman A, Ennos A (1999) The effects of soil bulk density on the morphology and anchorage mechanics of the root systems of sunflower and maize. Annals of Botany 83: 293–302.
|
[57] | Bengough AG, McKenzie B, Hallett P, Valentine T (2011) Root elongation, water stress, and mechanical impedance: a review of limiting stresses and beneficial root tip traits. J Exp Bot 62: 59–68. doi: 10.1093/jxb/erq350
|
[58] | Czarnes S, Hiller S, Dexter A, Hallett P, Bartoli F (1999) Root-soil adhesion in the maize rhizosphere: the rheological approach. Plant and Soil 211: 69–86. doi: 10.1023/a:1004656510344
|
[59] | Bingham I, Bengough A (2003) Morphological plasticity of wheat and barley roots in response to spatial variation in soil strength. Plant and Soil 250: 273–282. doi: 10.1023/a:1022891519039
|
[60] | Iijima M, Barlow PW, Bengough AG (2003) Root cap structure and cell production rates of maize (Zea mays) roots in compacted sand. New phytologist 160: 127–134. doi: 10.1046/j.1469-8137.2003.00860.x
|
[61] | Bengough A, Croser C, Pritchard J (1997) A biophysical analysis of root growth under mechanical stress. Plant Roots-From Cells to Systems: 107–116.
|
[62] | Materechera S, Alston A, Kirby J, Dexter A (1992) Influence of root diameter on the penetration of seminal roots into a compacted subsoil. Plant and Soil 144: 297–303. doi: 10.1007/bf00012888
|
[63] | Clark LJ, Ferraris S, Price AH, Whalley WR (2008) A gradual rather than abrupt increase in soil strength gives better root penetration of strong layers. Plant and Soil 307: 235–242. doi: 10.1007/s11104-008-9602-8
|
[64] | Abdalla A, Hettiaratchi D, Reece A (1969) The mechanics of root growth in granular media. J Agr Eng Res 14: 236–248. doi: 10.1016/0021-8634(69)90126-7
|
[65] | Chen G, Weil RR (2010) Penetration of cover crop roots through compacted soils. Plant and Soil 331: 31–43. doi: 10.1007/s11104-009-0223-7
|
[66] | Bengough A, Mullins C (1990) Mechanical impedance to root growth: a review of experimental techniques and root growth responses. J Soil Sci 41: 341–358. doi: 10.1111/j.1365-2389.1990.tb00070.x
|
[67] | Bengough A (1997) Modelling rooting depth and soil strength in a drying soil profile. J Theoretical Bio 186: 327–338. doi: 10.1006/jtbi.1996.0367
|
[68] | Kirby J, Bengough A (2002) Influence of soil strength on root growth: experiments and analysis using a critical-state model. Europ J Soil Sci 53: 119–127. doi: 10.1046/j.1365-2389.2002.00429.x
|
[69] | Lobet G, Pagès L, Draye X (2011) A novel image-analysis toolbox enabling quantitative analysis of root system architecture. Plant Physiology 157: 29–39. doi: 10.1104/pp.111.179895
|
[70] | French A, Ubeda-Tomás S, Holman TJ, Bennett MJ, Pridmore T (2009) High-throughput quantification of root growth using a novel image-analysis tool. Plant Physiol 150: 1784–1795. doi: 10.1104/pp.109.140558
|
[71] | French AP, Bennett M, Howells C, Patel D, Pridmore TP (2008) A probabilistic tracking approach to root measurement in images-particle filter tracking is used to measure roots, via a probabilistic graph. Biosignals 1: 108–115. doi: 10.5220/0001062701080115
|
[72] | Sadeghi A, Tonazzini A, Popova L, Barbara M (2013) Innovative robotic mechanism for soil penetration inspired by plant roots. Proc in IEEE ICRA 2013.
|
[73] | Crump SS (1992) Apparatus and method for creating three-dimensional objects. US Patent 5,121,329.
|
[74] | Iijima M, Higuchi T, Barlow PW (2004) Contribution of root cap mucilage and presence of an intact root cap in maize (Zea mays) to the reduction of soil mechanical impedance. Ann Bot 94: 473.
|
[75] | Bengough A, Mullins C (1991) Penetrometer resistance, root penetration resistance and root elongation rate in two sandy loam soils. Plant and Soil 131: 59–66.
|
[76] | Minasny B (2012) Contrasting soil penetration resistance values acquired from dynamic and motor-operated penetrometers. Geoderma 177: 57–62. doi: 10.1016/j.geoderma.2012.01.026
|
[77] | Xu X, Lehane BM (2008) Pile and penetrometer end bearing resistance in two-layered soil profiles. Géotechnique 58(3): 187–197. doi: 10.1680/geot.2008.58.3.187
|
[78] | Murata S, Yoshida E, Tomita K, Kurokawa H, Kamimura A, et al. (2000) Hardware design of modular robotic system. Proc Int Conf on Intelligent Robots and Systems (IROS 2000) IEEE/RSJ 3: 2210–2217. doi: 10.1109/iros.2000.895297
|
[79] | Fukuda T, Kawauchi Y (1990) Cellular robotic system (CEBOT) as one of the realization of self-organizing intelligent universal manipulator. IEEE: 662–667.
|
[80] | Lipson H, Pollack JB (2000) Automantic design and manufacture of robotic lifeforms. Nature 406: 6799.
|
[81] | Jones R, Haufe P, Sells E, Iravani P, Olliver V, et al. (2011) Reprap-the replicating rapid prototyping. Robotica 29(1): 177–191. doi: 10.1017/s026357471000069x
|
[82] | Suh JW, Homans SB, Yim M (2002) Telecubes: mechanical design of a module for self reconfigurable robotics. Proc IEEE Int Conf on Robotics and Automation ICRA’ 02: 4095–4101. doi: 10.1109/robot.2002.1014385
|
[83] | Jorgensen MW, Ostergaard EH, Lund HH (2004) Modular ATRON: Modules for a self-reconfigurable robot. Proc Int Conf on Intelligent Robots and Systems IEEE/RSJ IROS 2: 2068–2073. doi: 10.1109/iros.2004.1389702
|
[84] | Boncheva M, Bruzewicz DA, Whitesides GM (2003) Millimeter-scale self-assembly and its applications. Pure and Applied Chemistry 75(5): 621–630. doi: 10.1351/pac200375050621
|
[85] | Campbell M (2011) Robot builds its own body from sprayable foam. New Scientist 212: 24. doi: 10.1016/s0262-4079(11)62513-x
|
[86] | Iida F, Wang L, Brodbeck L (2012) Self-reconfiguration robots based on thermoplastic adhesives. Proc Int Symp on Distributed Autonomous Robotic Systems (DARS 2012).
|
[87] | Bailey SA, Cham JG, Cutkosky MR, Full RJ (2000) Biomimetic robotic mechanisms via shape deposition manufacturing. Robotics Research-International Symposium 9: 403–410.
|
[88] | Wood RJ, Avadhanula S, Sahai R, Steltz E, Fearing RS (2008) Microrobot design using fiber reinforced composites. J Mech Design 130: 052304. doi: 10.1115/1.2885509
|
[89] | Sun LH, Yang ZG, Li XH (2008) Study on the friction and wear behavior of POM/Al2O3 nanocomposites. Wear 264: 693–700. doi: 10.1016/j.wear.2007.06.005
|
[90] | Lunne T, Robertson PK, Powell JJM (1997) Cone penetration testing. Geotechnical Practice.
|
[91] | Smith CW, Johnston MA, Lorentz S (1997) The effect of soil compaction and soil physical properties on the mechanical resistance of South African forestry soils. Geoderma 78: 93–111. doi: 10.1016/s0016-7061(97)00029-3
|
[92] | ASAE EP542 (1999) Procedures for using and reporting data obtained with the soil cone penetrometer. St. Joseph, MI.
|
[93] | Maladen RD, Ding Y, Umbanhowar PB, Kamor A, Goldman DI (2011) Mechanical models of sandfish locomotion reveal principles of high performance subsurface sand-swimming. J. R. Soc. Interface 8(62): 1332–1345. doi: 10.1098/rsif.2010.0678
|
[94] | Ding Y, Gravish N, Goldman DI (2011) Drag induced lift in granular media. Physical Review Letters 106: 028001. doi: 10.1103/physrevlett.106.028001
|