全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2014 

Impact of Campylobacter jejuni cj0268c Knockout Mutation on Intestinal Colonization, Translocation, and Induction of Immunopathology in Gnotobiotic IL-10 Deficient Mice

DOI: 10.1371/journal.pone.0090148

Full-Text   Cite this paper   Add to My Lib

Abstract:

Background Although Campylobacter jejuni infections have a high prevalence worldwide and represent a significant socioeconomic burden, the underlying molecular mechanisms of induced intestinal immunopathology are still not well understood. We have recently generated a C. jejuni mutant strain NCTC11168::cj0268c, which has been shown to be involved in cellular adhesion and invasion. The immunopathological impact of this gene, however, has not been investigated in vivo so far. Methodology/Principal Findings Gnotobiotic IL-10 deficient mice were generated by quintuple antibiotic treatment and perorally infected with C. jejuni mutant strain NCTC11168::cj0268c, its complemented version (NCTC11168::cj0268c-comp-cj0268c), or the parental strain NCTC11168. Kinetic analyses of fecal pathogen loads until day 6 post infection (p.i.) revealed that knockout of cj0268c did not compromise intestinal C. jejuni colonization capacities. Whereas animals irrespective of the analysed C. jejuni strain developed similar clinical symptoms of campylobacteriosis (i.e. enteritis), mice infected with the NCTC11168::cj0268c mutant strain displayed significant longer small as well as large intestinal lengths indicative for less distinct C. jejuni induced pathology when compared to infected control groups at day 6 p.i. This was further supported by significantly lower apoptotic and T cell numbers in the colonic mucosa and lamina propria, which were paralleled by lower intestinal IFN-γ and IL-6 concentrations at day 6 following knockout mutant NCTC11168::cj0268c as compared to parental strain infection. Remarkably, less intestinal immunopathology was accompanied by lower IFN-γ secretion in ex vivo biopsies taken from mesenteric lymphnodes of NCTC11168::cj0268c infected mice versus controls. Conclusion/Significance We here for the first time show that the cj0268c gene is involved in mediating C. jejuni induced immunopathogenesis in vivo. Future studies will provide further deep insights into the immunological and molecular interplays between C. jejuni and innate immunity in human campylobacteriosis.

References

[1]  Altekruse SF, Stern NJ, Fields PI, Swerdlow DL (1999) Campylobacter jejuni–an emerging foodborne pathogen. Emerg Infect Dis 5: 28–35. doi: 10.3201/eid0501.990104
[2]  Allos BM (2001) Campylobacter jejuni Infections: update on emerging issues and trends. Clin Infect Dis 32: 1201–1206. doi: 10.1086/319760
[3]  Dasti JI, Tareen AM, Lugert R, Zautner AE, Gross U (2010) Campylobacter jejuni: a brief overview on pathogenicity-associated factors and disease-mediating mechanisms. Int J Med Microbiol 300: 205–211. doi: 10.1016/j.ijmm.2009.07.002
[4]  O Cróinín T, Backert S (2012) Host epithelial cell invasion by Campylobacter jejuni: trigger or zipper mechanism? Front Cell Infect Microbiol 2: 25. doi: 10.3389/fcimb.2012.00025
[5]  Moser I, Schroeder W, Salnikow J (1997) Campylobacter jejuni major outer membrane protein and a 59-kDa protein are involved in binding to fibronectin and INT 407 cell membranes. FEMS Microbiol Lett 157: 233–238. doi: 10.1111/j.1574-6968.1997.tb12778.x
[6]  Boehm M, Krause-Gruszczynska M, Rohde M, Tegtmeyer N, Takahashi S, et al. (2011) Major host factors involved in epithelial cell invasion of Campylobacter jejuni: role of fibronectin, integrin beta1, FAK, Tiam-1, and DOCK180 in activating Rho GTPase Rac1. Front Cell Infect Microbiol 1: 17. doi: 10.3389/fcimb.2011.00017
[7]  Krause-Gruszczynska M, Boehm M, Rohde M, Tegtmeyer N, Takahashi S, et al. (2011) The signaling pathway of Campylobacter jejuni-induced Cdc42 activation: Role of fibronectin, integrin beta 1, tyrosin kinases and guanine exchange factor Vav2. Cell Commun Signal 9: 32. doi: 10.1186/1478-811x-9-32
[8]  Pei Z, Burucoa C, Grignon B, Baqar S, Huang XZ, et al. (1998) Mutation in the peb1A locus of Campylobacter jejuni reduces interactions with epithelial cells and intestinal colonization of mice. Infect Immun 66: 938–943.
[9]  Ashgar SS, Oldfield NJ, Wooldridge KG, Jones MA, Irving GJ, et al. (2007) CapA, an autotransporter protein of Campylobacter jejuni, mediates association with human epithelial cells and colonization of the chicken gut. J Bacteriol 189: 1856–1865. doi: 10.1128/jb.01427-06
[10]  Oakland M, Jeon B, Sahin O, Shen Z, Zhang Q (2011) Functional characterization of a lipoprotein-encoding operon in Campylobacter jejuni. PLoS One 6: e20084. doi: 10.1371/journal.pone.0020084
[11]  Jin S, Joe A, Lynett J, Hani EK, Sherman P, et al. (2001) JlpA, a novel surface-exposed lipoprotein specific to Campylobacter jejuni, mediates adherence to host epithelial cells. Mol Microbiol 39: 1225–1236. doi: 10.1046/j.1365-2958.2001.02294.x
[12]  Jin S, Song YC, Emili A, Sherman PM, Chan VL (2003) JlpA of Campylobacter jejuni interacts with surface-exposed heat shock protein 90alpha and triggers signalling pathways leading to the activation of NF-kappaB and p38 MAP kinase in epithelial cells. Cell Microbiol 5: 165–174. doi: 10.1046/j.1462-5822.2003.00265.x
[13]  Holden KM, Gilbert M, Coloe PJ, Li J, Fry BN (2012) The role of WlaRG, WlaTB and WlaTC in lipooligosaccharide synthesis by Campylobacter jejuni strain 81116. Microb Pathog 52: 344–352. doi: 10.1016/j.micpath.2012.03.004
[14]  Tareen AM, Dasti JI, Zautner AE, Gross U, Lugert R (2011) Sulphite : cytochrome c oxidoreductase deficiency in Campylobacter jejuni reduces motility, host cell adherence and invasion. Microbiology 157: 1776–1785. doi: 10.1099/mic.0.045567-0
[15]  Tareen AM, Dasti JI, Zautner AE, Gross U, Lugert R (2010) Campylobacter jejuni proteins Cj0952c and Cj0951c affect chemotactic behaviour towards formic acid and are important for invasion of host cells. Microbiology 156: 3123–3135. doi: 10.1099/mic.0.039438-0
[16]  Novik V, Hofreuter D, Galan JE (2010) Identification of Campylobacter jejuni genes involved in its interaction with epithelial cells. Infect Immun 78: 3540–3553. doi: 10.1128/iai.00109-10
[17]  Tareen AM, Luder CG, Zautner AE, Grobeta U, Heimesaat MM, et al. (2013) The Campylobacter jejuni Cj0268c Protein Is Required for Adhesion and Invasion In Vitro. PLoS One 8: e81069. doi: 10.1371/journal.pone.0081069
[18]  Haag LM, Fischer A, Otto B, Plickert R, Kuhl AA, et al. (2012) Campylobacter jejuni induces acute enterocolitis in gnotobiotic IL-10?/? mice via Toll-like-receptor-2 and -4 signaling. PLoS One 7: e40761. doi: 10.1371/journal.pone.0040761
[19]  Masanta WO, Heimesaat MM, Bereswill S, Tareen AM, Lugert R, et al. (2013) Modification of Intestinal Microbiota and Its Consequences for Innate Immune Response in the Pathogenesis of Campylobacteriosis. Clin Dev Immunol 2013: 526860. doi: 10.1155/2013/526860
[20]  Heimesaat MM, Bereswill S, Fischer A, Fuchs D, Struck D, et al. (2006) Gram-negative bacteria aggravate murine small intestinal Th1-type immunopathology following oral infection with Toxoplasma gondii. J Immunol 177: 8785–8795. doi: 10.4049/jimmunol.177.12.8785
[21]  Bereswill S, Fischer A, Plickert R, Haag LM, Otto B, et al. (2011) Novel murine infection models provide deep insights into the “menage a trois” of Campylobacter jejuni, microbiota and host innate immunity. PLoS One 6: e20953. doi: 10.1371/journal.pone.0020953
[22]  Munoz M, Heimesaat MM, Danker K, Struck D, Lohmann U, et al. (2009) Interleukin (IL)-23 mediates Toxoplasma gondii-induced immunopathology in the gut via matrixmetalloproteinase-2 and IL-22 but independent of IL-17. J Exp Med 206: 3047–3059. doi: 10.1084/jem.20090900
[23]  Heimesaat MM, Fischer A, Jahn HK, Niebergall J, Freudenberg M, et al. (2007) Exacerbation of murine ileitis by Toll-like receptor 4 mediated sensing of lipopolysaccharide from commensal Escherichia coli. Gut 56: 941–948. doi: 10.1136/gut.2006.104497
[24]  Bereswill S, Munoz M, Fischer A, Plickert R, Haag LM, et al. (2010) Anti-inflammatory effects of resveratrol, curcumin and simvastatin in acute small intestinal inflammation. PLoS One 5: e15099. doi: 10.1371/journal.pone.0015099
[25]  Haag LM, Fischer A, Otto B, Plickert R, Kuhl AA, et al. (2012) Intestinal microbiota shifts towards elevated commensal Escherichia coli loads abrogate colonization resistance against Campylobacter jejuni in mice. PLoS One 7: e35988. doi: 10.1371/journal.pone.0035988
[26]  Haag LM, Fischer A, Otto B, Grundmann U, Kühl AA, et al. (2012) Campylobacter jejuni infection of infant mice: acute enterocolitis is followed by asymptomatic intestinal and extra-intestinal immune response. Eur J Microbiol Immunol (Bp) 2: 2–11. doi: 10.1556/eujmi.2.2012.1.2
[27]  Heimesaat MM, Haag LM, Fischer A, Otto B, Kuhl AA, et al. (2013) Survey of extra-intestinal immune responses in asymptomatic long-term Campylobacter jejuni-infected mice. Eur J Microbiol Immunol (Bp) 3: 174–182. doi: 10.1556/eujmi.3.2013.3.4
[28]  Backert S, Hofreuter D (2013) Molecular methods to investigate adhesion, transmigration, invasion and intracellular survival of the foodborne pathogen Campylobacter jejuni. J Microbiol Methods 95: 8–23. doi: 10.1016/j.mimet.2013.06.031
[29]  Havelaar AH, van Pelt W, Ang CW, Wagenaar JA, van Putten JP, et al. (2009) Immunity to Campylobacter: its role in risk assessment and epidemiology. Crit Rev Microbiol 35: 1–22. doi: 10.1080/10408410802636017
[30]  Otto B, Haag LM, Fischer A, Plickert R, Kühl AA, et al.. (2012) Campylobacter jejuni induces extra-intestinal immune responses via Toll-like-receptor-4 signaling in conventional IL-10 deficient mice with chronic colitis. Eur J Microbiol Immunol (Bp): 2, 210–219.
[31]  Heimesaat MM, Nogai A, Bereswill S, Plickert R, Fischer A, et al. (2009) MyD88/TLR9 mediated immunopathology and gut microbiota dynamics in a novel murine model of intestinal graft-versus-host disease. Gut 59: 1079–1087. doi: 10.1136/gut.2009.197434

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133