[1] | Sanes JR, Lichtman JW (1999) Development of the vertebrate neuromuscular junction. Annu Rev Neurosci 22: 389–442. doi: 10.1146/annurev.neuro.22.1.389
|
[2] | Hall ZW, Sanes JR (1993) Synaptic structure and development: the neuromuscular junction. Cell 72 Suppl: 99–121 doi: 10.1016/s0092-8674(05)80031-5
|
[3] | DeChiara TM, Bowen DC, Valenzuela DM, Simmons MV, Poueymirou WT, et al. (1996) The receptor tyrosine kinase MuSK is required for neuromuscular junction formation in vivo. Cell 85: 501–512. doi: 10.1016/s0092-8674(00)81251-9
|
[4] | Kim N, Stiegler AL, Cameron TO, Hallock PT, Gomez AM, et al. (2008) Lrp4 is a receptor for Agrin and forms a complex with MuSK. Cell 135: 334–342. doi: 10.1016/j.cell.2008.10.002
|
[5] | Zhang B, Luo S, Wang Q, Suzuki T, Xiong WC, et al. (2008) LRP4 serves as a coreceptor of agrin. Neuron 60: 285–297. doi: 10.1016/j.neuron.2008.10.006
|
[6] | Fertuck HC, Salpeter MM (1976) Quantitation of junctional and extrajunctional acetylcholine receptors by electron microscope autoradiography after 125I-alpha-bungarotoxin binding at mouse neuromuscular junctions. J Cell Biol 69: 144–158. doi: 10.1083/jcb.69.1.144
|
[7] | Dai Z, Luo X, Xie H, Peng HB (2000) The actin-driven movement and formation of acetylcholine receptor clusters. J Cell Biol 150: 1321–1334. doi: 10.1083/jcb.150.6.1321
|
[8] | Lee CW, Han J, Bamburg JR, Han L, Lynn R, et al. (2009) Regulation of acetylcholine receptor clustering by ADF/cofilin-directed vesicular trafficking. Nat Neurosci 12: 848–856. doi: 10.1038/nn.2322
|
[9] | Dobbins GC, Luo S, Yang Z, Xiong WC, Mei L (2008) alpha-Actinin interacts with rapsyn in agrin-stimulated AChR clustering. Mol Brain 1: 18. doi: 10.1186/1756-6606-1-18
|
[10] | Wang ZZ, Mathias A, Gautam M, Hall ZW (1999) Metabolic stabilization of muscle nicotinic acetylcholine receptor by rapsyn. J Neurosci 19: 1998–2007.
|
[11] | Lindstrom JM (2000) Acetylcholine receptors and myasthenia. Muscle Nerve 23: 453–477. doi: 10.1002/(sici)1097-4598(200004)23:4<453::aid-mus3>3.0.co;2-o
|
[12] | Beroukhim R, Unwin N (1995) Three-dimensional location of the main immunogenic region of the acetylcholine receptor. Neuron 15: 323–331. doi: 10.1016/0896-6273(95)90037-3
|
[13] | Lindstrom J, Einarson B (1979) Antigenic modulation and receptor loss in experimental autoimmune myasthenia gravis. Muscle Nerve 2: 173–179. doi: 10.1002/mus.880020304
|
[14] | Losen M, Martinez-Martinez P, Phernambucq M, Schuurman J, Parren PW, et al. (2008) Treatment of myasthenia gravis by preventing acetylcholine receptor modulation. Ann N Y Acad Sci 1132: 174–179. doi: 10.1196/annals.1405.034
|
[15] | Barroso MM (2011) Quantum dots in cell biology. J Histochem Cytochem 59: 237–251. doi: 10.1369/0022155411398487
|
[16] | Geng L, Zhang HL, Peng HB (2009) The formation of acetylcholine receptor clusters visualized with quantum dots. BMC Neurosci 10: 80. doi: 10.1186/1471-2202-10-80
|
[17] | Zhang HL, Peng HB (2011) Mechanism of acetylcholine receptor cluster formation induced by DC electric field. PLoS One 6: e26805. doi: 10.1371/journal.pone.0026805
|
[18] | Axelrod D (1980) Crosslinkage and visualization of acetylcholine receptors on myotubes with biotinylated alpha-bungarotoxin and fluorescent avidin. Proc Natl Acad Sci U S A 77: 4823–4827. doi: 10.1073/pnas.77.8.4823
|
[19] | Daggett DF, Cohen MW, Stone D, Nikolics K, Rauvala H, et al. (1996) The role of an agrin-growth factor interaction in ACh receptor clustering. Mol Cell Neurosci 8: 272–285. doi: 10.1006/mcne.1996.0063
|
[20] | Peng HB, Yang JF, Dai Z, Lee CW, Hung HW, et al. (2003) Differential effects of neurotrophins and schwann cell-derived signals on neuronal survival/growth and synaptogenesis. J Neurosci 23: 5050–5060.
|
[21] | Peng HB, Baker LP, Chen Q (1991) Tissue culture of Xenopus neurons and muscle cells as a model for studying synaptic induction. Methods Cell Biol 36: 511–526. doi: 10.1016/s0091-679x(08)60294-0
|
[22] | Tang J, Marcus RA (2005) Mechanisms of fluorescence blinking in semiconductor nanocrystal quantum dots. J Chem Phys 123: 054704. doi: 10.1063/1.1993567
|
[23] | Engel AG, Fumagalli G (1982) Mechanisms of acetylcholine receptor loss from the neuromuscular junction. Ciba Found Symp: 197–224.
|
[24] | Kumari S, Borroni V, Chaudhry A, Chanda B, Massol R, et al. (2008) Nicotinic acetylcholine receptor is internalized via a Rac-dependent, dynamin-independent endocytic pathway. J Cell Biol 181: 1179–1193. doi: 10.1083/jcb.200709086
|
[25] | Bruneau E, Sutter D, Hume RI, Akaaboune M (2005) Identification of nicotinic acetylcholine receptor recycling and its role in maintaining receptor density at the neuromuscular junction in vivo. J Neurosci 25: 9949–9959. doi: 10.1523/jneurosci.3169-05.2005
|
[26] | Michalet X, Pinaud FF, Bentolila LA, Tsay JM, Doose S, et al. (2005) Quantum dots for live cells, in vivo imaging, and diagnostics. Science 307: 538–544. doi: 10.1126/science.1104274
|
[27] | Crimeen-Irwin B, Ellis S, Christiansen D, Ludford-Menting MJ, Milland J, et al. (2003) Ligand binding determines whether CD46 is internalized by clathrin-coated pits or macropinocytosis. J Biol Chem 278: 46927–46937. doi: 10.1074/jbc.m308261200
|
[28] | Stoddart A, Jackson AP, Brodsky FM (2005) Plasticity of B cell receptor internalization upon conditional depletion of clathrin. Mol Biol Cell 16: 2339–2348. doi: 10.1091/mbc.e05-01-0025
|
[29] | Schutze S, Machleidt T, Adam D, Schwandner R, Wiegmann K, et al. (1999) Inhibition of receptor internalization by monodansylcadaverine selectively blocks p55 tumor necrosis factor receptor death domain signaling. J Biol Chem 274: 10203–10212. doi: 10.1074/jbc.274.15.10203
|
[30] | Hertel C, Coulter SJ, Perkins JP (1985) A comparison of catecholamine-induced internalization of beta-adrenergic receptors and receptor-mediated endocytosis of epidermal growth factor in human astrocytoma cells. Inhibition by phenylarsine oxide. J Biol Chem 260: 12547–12553.
|
[31] | Yancey PG, Rodrigueza WV, Kilsdonk EP, Stoudt GW, Johnson WJ, et al. (1996) Cellular cholesterol efflux mediated by cyclodextrins. Demonstration Of kinetic pools and mechanism of efflux. J Biol Chem 271: 16026–16034. doi: 10.1074/jbc.271.27.16026
|
[32] | Mukherjee S, Zha X, Tabas I, Maxfield FR (1998) Cholesterol distribution in living cells: fluorescence imaging using dehydroergosterol as a fluorescent cholesterol analog. Biophys J 75: 1915–1925. doi: 10.1016/s0006-3495(98)77632-5
|
[33] | Matteoni R, Kreis TE (1987) Translocation and clustering of endosomes and lysosomes depends on microtubules. J Cell Biol 105: 1253–1265. doi: 10.1083/jcb.105.3.1253
|
[34] | Salpeter MM, Loring RH (1985) Nicotinic acetylcholine receptors in vertebrate muscle: properties, distribution and neural control. Prog Neurobiol 25: 297–325. doi: 10.1016/0301-0082(85)90018-8
|
[35] | Salpeter MM, Cooper DL, Levitt-Gilmour T (1986) Degradation rates of acetylcholine receptors can be modified in the postjunctional plasma membrane of the vertebrate neuromuscular junction. J Cell Biol 103: 1399–1403. doi: 10.1083/jcb.103.4.1399
|
[36] | Shyng SL, Salpeter MM (1989) Degradation rate of acetylcholine receptors inserted into denervated vertebrate neuromuscular junctions. J Cell Biol 108: 647–651. doi: 10.1083/jcb.108.2.647
|
[37] | McMahan UJ, Horton SE, Werle MJ, Honig LS, Kroger S, et al. (1992) Agrin isoforms and their role in synaptogenesis. Curr Opin Cell Biol 4: 869–874. doi: 10.1016/0955-0674(92)90113-q
|
[38] | Glass DJ, Bowen DC, Stitt TN, Radziejewski C, Bruno J, et al. (1996) Agrin acts via a MuSK receptor complex. Cell 85: 513–523. doi: 10.1016/s0092-8674(00)81252-0
|
[39] | Bezakova G, Rabben I, Sefland I, Fumagalli G, Lomo T (2001) Neural agrin controls acetylcholine receptor stability in skeletal muscle fibers. Proc Natl Acad Sci U S A 98: 9924–9929. doi: 10.1073/pnas.171539698
|
[40] | Banks GB, Fuhrer C, Adams ME, Froehner SC (2003) The postsynaptic submembrane machinery at the neuromuscular junction: requirement for rapsyn and the utrophin/dystrophin-associated complex. J Neurocytol 32: 709–726. doi: 10.1023/b:neur.0000020619.24681.2b
|
[41] | Bartoli M, Ramarao MK, Cohen JB (2001) Interactions of the rapsyn RING-H2 domain with dystroglycan. J Biol Chem 276: 24911–24917. doi: 10.1074/jbc.m103258200
|
[42] | Ramarao MK, Bianchetta MJ, Lanken J, Cohen JB (2001) Role of rapsyn tetratricopeptide repeat and coiled-coil domains in self-association and nicotinic acetylcholine receptor clustering. J Biol Chem 276: 7475–7483. doi: 10.1074/jbc.m009888200
|
[43] | Gervasio OL, Phillips WD (2005) Increased ratio of rapsyn to ACh receptor stabilizes postsynaptic receptors at the mouse neuromuscular synapse. J Physiol 562: 673–685. doi: 10.1113/jphysiol.2004.077685
|
[44] | Martinez-Martinez P, Losen M, Duimel H, Frederik P, Spaans F, et al. (2007) Overexpression of rapsyn in rat muscle increases acetylcholine receptor levels in chronic experimental autoimmune myasthenia gravis. Am J Pathol 170: 644–657. doi: 10.2353/ajpath.2007.060676
|
[45] | Peng HB, Cheng PC, Luther PW (1981) Formation of ACh receptor clusters induced by positively charged latex beads. Nature 292: 831–834. doi: 10.1038/292831a0
|
[46] | Lin W, Burgess RW, Dominguez B, Pfaff SL, Sanes JR, et al. (2001) Distinct roles of nerve and muscle in postsynaptic differentiation of the neuromuscular synapse. Nature 410: 1057–1064. doi: 10.1038/35074025
|
[47] | Anderson MJ, Cohen MW (1977) Nerve-induced and spontaneous redistribution of acetylcholine receptors on cultured muscle cells. J Physiol 268: 757–773.
|
[48] | Apel ED, Glass DJ, Moscoso LM, Yancopoulos GD, Sanes JR (1997) Rapsyn is required for MuSK signaling and recruits synaptic components to a MuSK-containing scaffold. Neuron 18: 623–635. doi: 10.1016/s0896-6273(00)80303-7
|
[49] | Peng HB, Ali AA, Dai Z, Daggett DF, Raulo E, et al. (1995) The role of heparin-binding growth-associated molecule (HB-GAM) in the postsynaptic induction in cultured muscle cells. J Neurosci 15: 3027–3038.
|
[50] | Peng HB (1986) Elimination of preexistent acetylcholine receptor clusters induced by the formation of new clusters in the absence of nerve. J Neurosci 6: 581–589.
|
[51] | Qian YK, Chan AW, Madhavan R, Peng HB (2008) The function of Shp2 tyrosine phosphatase in the dispersal of acetylcholine receptor clusters. BMC Neurosci 9: 70. doi: 10.1186/1471-2202-9-70
|
[52] | Dai Z, Peng HB (1998) A role of tyrosine phosphatase in acetylcholine receptor cluster dispersal and formation. J Cell Biol 141: 1613–1624. doi: 10.1083/jcb.141.7.1613
|
[53] | Madhavan R, Zhao XT, Ruegg MA, Peng HB (2005) Tyrosine phosphatase regulation of MuSK-dependent acetylcholine receptor clustering. Mol Cell Neurosci 28: 403–416. doi: 10.1016/j.mcn.2004.10.005
|