[1] | Willcutt EG (2012) The prevalence of DSM-IV attention-deficit/hyperactivity disorder: a meta-analytic review. Neurotherapeutics 9: 490–499. doi: 10.1007/s13311-012-0135-8
|
[2] | Swanson JM, Sunohara GA, Kennedy JL, Regino R, Fineberg E, et al. (1998) Association of the dopamine receptor D4 (DRD4) gene with a refined phenotype of attention deficit hyperactivity disorder (ADHD): a family-based approach. Mol Psych 3: 38–41. doi: 10.1038/sj.mp.4000354
|
[3] | Swanson JM, Flodman P, Kennedy J, Spence MA, Moyzis R, et al. (2000) Dopamine genes and ADHD. Neurosci Biobehav Rev 24: 21–25. doi: 10.1016/s0149-7634(99)00062-7
|
[4] | Gill M, Daly G, Heron S, Hawi Z, Fitzgerald M (1997) Confirmation of association between attention deficit hyperactivity disorder and a dopamine transporter polymorphism. Mol Psych 2: 311–313. doi: 10.1038/sj.mp.4000290
|
[5] | Bobb AJ, Castellanos FX, Addington AM, Rapoport JL (2006) Molecular genetic studies of ADHD: 1991 to 2004. Am J Med Genet B Neuropsych Genet 132: 109–125. doi: 10.1002/ajmg.b.30086
|
[6] | Faraone SV, Perlis RH, Doyle AE, Smoller JW, Goralnick JJ, et al. (2005) Molecular genetics of attention-deficit/hyperactivity disorder. Biol Psychiatry 57: 1313–1323. doi: 10.1016/j.biopsych.2004.11.024
|
[7] | Gizer IR, Ficks C, Waldman ID (2009) Candidate gene studies of ADHD: a meta-analytic review. Human genetics 126: 51–90. doi: 10.1007/s00439-009-0694-x
|
[8] | Volkow ND, Wang GJ, Kollins SH, Wigal TL, Newcorn JH, et al. (2009) Evaluating dopamine reward pathway in ADHD: clinical implications. Jama 302: 1084–1091. doi: 10.1001/jama.2009.1308
|
[9] | Haenlein M, Caul WF (1987) Attention deficit disorder with hyperactivity: a specific hypothesis of reward dysfunction. J Am Acad Child Adolesc Psychiatry 26: 356–362. doi: 10.1097/00004583-198705000-00014
|
[10] | Sonuga-Barke EJ (2002) Psychological heterogeneity in AD/HD: a dual pathway model of behaviour and cognition. Behav Brain Res 130: 29–36. doi: 10.1016/s0166-4328(01)00432-6
|
[11] | Sagvolden T, Johansen EB, Aase H, Russell VA (2005) A dynamic developmental theory of attention-deficit/hyperactivity disorder (ADHD) predominantly hyperactive/impulsive and combined subtypes. Behav Brain Sci 28: 397–419. doi: 10.1017/s0140525x05000075
|
[12] | Tripp G, Wickens JR (2008) Research review: dopamine transfer deficit: a neurobiological theory of altered reinforcement mechanisms in ADHD. J Child Psychol Psychiatry 49: 691–704. doi: 10.1111/j.1469-7610.2007.01851.x
|
[13] | Luman M, Oosterlaan J, Sergeant JA (2005) The impact of reinforcement contingencies on AD/HD: a review and theoretical appraisal. Clin Psychol Review 25: 183–213. doi: 10.1016/j.cpr.2005.04.001
|
[14] | Carlson CL, Tamm L (2000) Responsiveness of children with attention deficit-hyperactivity disorder to reward and response cost: differential impact on performance and motivation. J Consult Clin Psych 68: 73–83. doi: 10.1037//0022-006x.68.1.73
|
[15] | Konrad K, Gauggel S, Manz A, Scholl M (2000) Lack of inhibition: a motivational deficit in children with attention deficit/hyperactivity disorder and children with traumatic brain injury. Child Neuropsychol 6: 286–96. doi: 10.1076/chin.6.4.286.3145
|
[16] | Luman M, Oosterland J, Knol DL, Sergeant JA (2008) Decision making in ADHD: sensitive to frequency but blind to magnitude of penalty? J Child Psychol Psychiatry 49: 712–722. doi: 10.1111/j.1469-7610.2008.01910.x
|
[17] | McInerny RJ, Kerns KA (2003) Time reproduction in children with ADHD: motivation matters. Child Neuropsychol 9: 91–108. doi: 10.1076/chin.9.2.91.14506
|
[18] | Slusarek M, Velling S, Bunk D, Eggers C (2001) Motivational effects on inhibitory control in children with AD/HD. J Am Acad Child Adolesc Psychiatry 40: 355–363. doi: 10.1097/00004583-200103000-00016
|
[19] | Crone EA, Jennings JR, Van der Molen MW (2003) Sensitivity to interference and response contingencies in attention-deficit hyperactivity disorder. J Child Psychol Psychiatry 44: 214–226. doi: 10.1111/1469-7610.00115
|
[20] | Iaboni F, Douglas VI, Ditto B (1997) Psychophysiological response of AD/HD children to reward and extinction. Psychophysiology 34: 116–123. doi: 10.1111/j.1469-8986.1997.tb02422.x
|
[21] | Luman M, Oosterlaan J, Hyde C, Van Meel CS, Sergeant JA (2007) Heart rate and reinforcement in ADHD. J Child Psychol Psychiatry 48: 890–898. doi: 10.1111/j.1469-7610.2007.01769.x
|
[22] | Luman M, Oosterlaan J, Sergeant JA (2008) Modulation of response timing in ADHD, effects of reinforcement valence and magnitude. J Abnorm Child Psychol 36: 445–456. doi: 10.1007/s10802-007-9190-8
|
[23] | Solanto MV, Abikoff H, Sonuga-Barke EJS, Schachar R, Logan GD, et al. (2001) The ecological validity of delay aversion and response inhibition as measures of impulsivity in AD/HD: a supplement to the NIMH Multi-modal treatment study of AD/HD. J Abnorm Child Psychol 29: 215–228.
|
[24] | Scheres A, Dijkstra M, Ainslie E, Balkan J, Reynolds B, et al. (2006) Temporal and probabilistic discounting of rewards in children and adolescents: effects of age and ADHD symptoms. Neuropsychologia 44: 2092–2103. doi: 10.1016/j.neuropsychologia.2005.10.012
|
[25] | Scheres A, Tontsch C, Thoeny AL, Kaczkurkin A (2010) Temporal reward discounting in attention-deficit/hyperactivity disorder: the contribution of symptom domains, reward magnitude, and session length. Biol Psychiatry 67: 641–648. doi: 10.1016/j.biopsych.2009.10.033
|
[26] | Antrop I, Stock P, Verte S, Wiersema JR, Baeyens D, et al. (2006) ADHD and delay aversion: the influence of non-temporal stimulation on choice for delayed rewards. J Child Psychol Psychiatry 47: 1152–1158. doi: 10.1111/j.1469-7610.2006.01619.x
|
[27] | Bitsakou P, Psychogiou L, Thompson M, Sonuga-Barke EJS (2009) Delay aversion in attention deficit/hyperactivity disorder: an empirical investigation of the broader phenotype. Neuropsychologica 47: 446–456. doi: 10.1016/j.neuropsychologia.2008.09.015
|
[28] | Hoerger ML, Mace FC (2006) A computerized test of self-control predicts classroom behavior. J Appl Behav Anal 39: 147–159. doi: 10.1901/jaba.2006.171-04
|
[29] | Kuntsi J, Oosterlaan J, Stevenson J (2001) Psychological mechanisms in hyperactivity: I. Response inhibition deficit, working memory impairment, delay aversion, or something else? J Child Psychol Psychiatry 42: 199–221. doi: 10.1111/1469-7610.00711
|
[30] | Schweitzer JB, Sulzer-Azaroff B (1995) Self-control in boys with Attention Deficit Hyperactivity Disorder: effects of added stimulation and time. J Child Psychol Psychiatry 36: 671–686. doi: 10.1111/j.1469-7610.1995.tb02321.x
|
[31] | Tripp G, Alsop B (1999) Sensitivity to reward frequency in boys with attention deficit hyperactivity disorder. J Clin Child Psychol 28: 366–375. doi: 10.1207/s15374424jccp280309
|
[32] | Tripp G, Alsop B (2001) Sensitivity to reward delay in children with attention deficit hyperactivity disorder (ADHD). J child Psychol Psychiatry 42: 691–698. doi: 10.1111/1469-7610.00764
|
[33] | Sonuga-Barke EJS, Sergeant JA, Nigg J, Willcutt E (2008) Executive dysfunction and delay aversion in attention deficit hyperactivity disorder: nosologic and diagnostic implications. Child Adolesc Psychiatr Clin N Am 17: 367–384. doi: 10.1016/j.chc.2007.11.008
|
[34] | Marx I, Hubner T, Herpertz SC, Berger C, Reuter E, et al. (2010) Cross-sectional evaluation of cognitive functioning in children, adolescents and young adults with ADHD. J Neural Transm 117: 403–429. doi: 10.1007/s00702-009-0345-3
|
[35] | Marx I, H?pcke C, Berger C, Wandschneider R, Herpertz SC (2013) The impact of financial reward contingencies on cognitive function profiles in adult ADHD. PLoS ONE 8(6): e67002 doi:10.1371/journal.pone.0067002.
|
[36] | Ferster CB (1953) The use of the free operant in the analysis behavior. Psychol Bull 50: 263–274. doi: 10.1037/h0055514
|
[37] | Garrud P, Goodall G, Mackintosh NJ (1981) Overshadowing of a stimulusreinforcer association by an instrumental response. J Exp Psychol 33: 123–135.
|
[38] | Winstanley CA, Theobald DEH, Cardinal RN, Robbins TW (2004) Contrasting roles of basolateral amygdala and orbitofrontal cortex in impulsive choice. J Neurosci 19: 4718–4722. doi: 10.1523/jneurosci.5606-03.2004
|
[39] | Ljungberg T, Apicella P, Schultz W (1992) Responses of monkey dopamine neurons during learning of behavioral reactions. J Neurophysiol 67: 145–163. doi: 10.1007/978-1-4684-5871-8_51
|
[40] | Pan WX, Schmidt R, Wickens JR, Hyland BI (2005) Dopamine cells respond to predicted events during classical conditioning: evidence for eligibility traces in the reward-learning network. J Neurosci 25: 6235–6242. doi: 10.1523/jneurosci.1478-05.2005
|
[41] | Schultz W (1998) Predictive reward signal of dopamine neurons. J Neurophysiol 80: 1–27.
|
[42] | Schultz W (2002) Getting formal with dopamine and reward. Neuron 36: 241–263. doi: 10.1016/s0896-6273(02)00967-4
|
[43] | Descarries L, Lemay B, Doucet G, Berger B (1987) Regional and laminar density of the dopamine innervation in adult rat cerebral cortex. Neurosci 21: 807–824. doi: 10.1016/0306-4522(87)90038-8
|
[44] | Doucet G, Descarries L, Garcia S (1986) Quantification of the dopamine innervation in adult rat neostriatum. Neurosci 19: 427–445. doi: 10.1016/0306-4522(86)90272-1
|
[45] | O’Doherty JP, Dayan P, Schultz J, Deichmann R, Friston K, et al. (2004) Dissociable roles of ventral and dorsal striatum in instrumental conditioning. Science 304: 452–454. doi: 10.1126/science.1094285
|
[46] | Dreher JC, Kohn P, Kolachana B, Weinberger DR, Berman KF (2009) Variation in dopamine genes influences responsivity of the human reward system. Proc Natl Acad Sci 106: 617–622. doi: 10.1073/pnas.0805517106
|
[47] | Schott BH, Minuzzi L, Krebs RM, Elmenhorst D, Lang M, et al. (2008) Mesolimbic functional magnetic resonance imaging activations during reward anticipation correlate with reward-related ventral striatal dopamine release. J Neurosci 28: 14311–14319. doi: 10.1523/jneurosci.2058-08.2008
|
[48] | Knutson B, Gibbs SEB (2007) Linking nucleus accumbens dopamine and blood oxygenation. Psychopharmacology 191: 813–822. doi: 10.1007/s00213-006-0686-7
|
[49] | Scheres A, Milham MP, Knutson B, Castellanos FX (2007) Ventral striatal hyporesponsiveness during reward anticipation in attention-deficit/hyperactivity disorder. Biol Psychiatry 61: 720–724. doi: 10.1016/j.biopsych.2006.04.042
|
[50] | Str?le A, Stoy M, Wrase J, Schwarzer S, Schlagenhauf F, et al. (2008) Reward anticipation and outcomes in adult males with attention-deficit/hyperactivity disorder. NeuroImage 39: 966–972. doi: 10.1016/j.neuroimage.2007.09.044
|
[51] | Plichta MM, Vasic N, Wolf RC, Lesch KP, Brummer D, et al. (2009) Neural hyporesponsiveness and hyperresponsiveness during immediate and delayed reward processing in adult attention-deficit/hyperactivity disorder. Biol Psychiatry 65: 7–14. doi: 10.1016/j.biopsych.2008.07.008
|
[52] | Carmona S, Hoekzema E, Ramos-Quiroga JA, Richarte V, Canals C, et al. (2012) Response inhibition and reward anticipation in medication-na?ve adults with attention-deficit/hyperactivity disorder: a within-subject case-control neuroimaging study. Hum Brain Mapp 33: 2350–2361. doi: 10.1002/hbm.21368
|
[53] | Hoogman M, Aarts E, Zwiers M, Slaats-Willemse D, Naber M, et al. (2011) Nitric oxide synthase genotype modulation of impulsivity and ventral striatal activity in adult ADHD patients and healthy comparison subjects. Am J Psychiatry 168: 1099–1106. doi: 10.1176/appi.ajp.2011.10101446
|
[54] | Stark R, Bauer E, Merz CJ, Zimmermann M, Reuter M, et al. (2011) ADHD related behaviors are associated with brain activation in the reward system. Neuropsychologia 49: 426–434. doi: 10.1016/j.neuropsychologia.2010.12.012
|
[55] | Paloyelis Y, Mehta MA, Faraone SV, Asherson P, Kuntsi J (2012) Striatal sensitivity during reward processing in attention-deficit/hyperactivity disorder. J Am Acad Child Adolesc Psychiatry 51: 722–732.
|
[56] | Schultz W, Dayan P, Montague PR (1997) A neural substrate of prediction and reward. Science 275: 1593–1599. doi: 10.1126/science.275.5306.1593
|
[57] | O’Doherty JP, Deichmann R, Critchley HD, Dolan RJ (2002) Neural responses during anticipation of a primary taste reward. Neuron 33: 815–826. doi: 10.1016/s0896-6273(02)00603-7
|
[58] | Mattos P, Segenreich D, Saboya E, Louz? M, Dias G, et al. (2006) Transcultural adaptation of the Adult Self-Report Scale into Portuguese for evaluation of adult attention-deficit/hyperactivity disorder (ADHD). Revista de Psiquiatria Clíica 33: 188–194. doi: 10.1590/s0101-60832006000400004
|
[59] | Grevet EH, Bau CHD, Salgado CAI, Ficher A, Victor MM, et al. (2005) Interrater reliability for diagnosis in adults of attention deficit hyperactivity disorder and oppositional defiant disorder using K-SADS-E. Arquivos de Neuro-psiquiatria 63: 307–310.
|
[60] | Amorim P (2000) Mini International Neuropsychiatric Interview (MINI): valida??o de entrevista breve para diagnótico de transtornos mentais. Rev Bras Psiquiatr 22: 106–115. doi: 10.1590/s1516-44462000000300003
|
[61] | Kaufman J, Birmaher B, Brent D, Rao U, Flynn C, et al. (1997) Schedule for affective disorders and schizophrenia for school-age children-present and lifetime version (K-SADS-PL): initial reliability and validity data. J Am Acad Child Adolesc Psychiatry 36: 980–988. doi: 10.1097/00004583-199707000-00021
|
[62] | Sheehan DV, Lecrubier Y, Sheehan KH, Amorim P, Janavs J, et al. (1998) The Mini-International Neuropsychiatric Interview (M.I.N.I): the development and validation of a structured diagnostic psychiatric interview for DSM-IV and ICD-10. J Clin Psychiatry 1998 59 Suppl 2022–23. doi: 10.1016/s0924-9338(97)83296-8
|
[63] | Oldfield RC (1971) The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia 9: 97–113. doi: 10.1016/0028-3932(71)90067-4
|
[64] | Yates DB, Trentini CM, Tosi SD, Corrêa SK, Poggere LC, et al. (2006) Apresenta??o da Escala de Inteligência Wechsler abreviada (WASI). Avalia??o Psicológica 5: 227–233.
|
[65] | Bullmore ET, Brammer MJ, Rabe-Hesketh S, Curtis VA, Morris RG, et al. (1999) Methods for diagnosis and treatment of stimulus-correlated motion in generic brain activation studies using fMRI. Hum Brain Mapp 7: 38–48. doi: 10.1002/(sici)1097-0193(1999)7:1<38::aid-hbm4>3.3.co;2-h
|
[66] | Epstein JN, Casey BJ, Tonev ST, Davidson M, Reiss AL, et al. (2007) Assessment and prevention of head motion during imaging of patients with attention deficit hyperactivity disorder. Psychiatry Res 155: 75–82. doi: 10.1016/j.pscychresns.2006.12.009
|
[67] | Li J, Delgado MR, Phelps EA (2011) How instructed knowledge modulates the neural systems of reward learning. PNAS 108: 55–60. doi: 10.1073/pnas.1014938108
|
[68] | Clark JJ, Collins AL, Sanford CA, Phillips PEM (2013) Dopamine encoding of Pavlovian incentive stimuli diminishes with extended training. J Neurosci 33: 3526–3532. doi: 10.1523/jneurosci.5119-12.2013
|
[69] | Bellgowan PSF, Bandettini PA, Van Gelderen P, Martin A, Bodurka J (2006) Improved BOLD detection in the medial temporal region using parallel imaging and voxel volume reduction. NeuroImage 29: 1244–1251. doi: 10.1016/j.neuroimage.2005.08.042
|
[70] | Bodurka J, Ye F, Petridou N, Murphy K, Bandettini PA (2007) Mapping the MRI voxel volume in which thermal noise matches physiological noise - implications for fMRI. NeuroImage 34: 542–549. doi: 10.1016/j.neuroimage.2006.09.039
|
[71] | Friston KJ, Frith CD, Turner R, Frackowiak RSJ (1995) Characterizing evoked hemodynamics with fMRI. NeuroImage 2: 157–165. doi: 10.1006/nimg.1995.1018
|
[72] | Worsley KJ, Friston KJ (1995) Analysis of fMRI time-series revisited-again. NeuroImage 2: 173–181. doi: 10.1006/nimg.1995.1023
|
[73] | Sacchet DM, Knutson B (2013) Spatial smoothing systematically biases the localization of reward-related brain activity. Neuroimage 66: 270–277. doi: 10.1016/j.neuroimage.2012.10.056
|
[74] | Macey PM, Macey KE, Kumar R, Harper RM (2004) A method for removal of global effects from fMRI time series. NeuroImage 22: 360–366. doi: 10.1016/j.neuroimage.2003.12.042
|
[75] | Zarahn E, Aguirre G, D’Esposito M (1997) A trial-based experimental design for fMRI. NeuroImage 6: 122–138. doi: 10.1006/nimg.1997.0279
|
[76] | Delgado MR, Stenger VA, Fiez JA (2004) Motivation-dependent responses in the human caudate nucleus. Cereb Cortex 14: 1022–1030. doi: 10.1093/cercor/bhh062
|
[77] | Galvan A, Hare TA, Davidson M, Spicer J, Glover G, et al. (2005) The role of ventral frontostriatal circuitry in reward-based learning in humans. J Neurosci 25: 8650–8656. doi: 10.1523/jneurosci.2431-05.2005
|
[78] | Stoy M, Schlagenhauf F, Schlochtermeier L, Wrase J, Knutson B, et al. (2011) Reward processing in male adults with childhood ADHD: a comparison between drug-naive and methylphenidate-treated subjects. Psychopharmacology (Berl) 215: 467–481. doi: 10.1007/s00213-011-2166-y
|
[79] | Liu X, Hairston J, Schrier M, Fan J (2011) Common and distinct networks underlying reward valence and processing stages: a meta-analysis of functional neuroimaging studies. Neurosci Biobehav R 35: 1219–1236. doi: 10.1016/j.neubiorev.2010.12.012
|
[80] | Mirenowicz J, Schultz W (1996) Preferential activation of midbrain dopamine neurons by appetitive rather than aversive stimuli. Nature 379: 449–451. doi: 10.1038/379449a0
|
[81] | Knutson B, Fong GW, Adams CM, Varner JL, Hommer D (2001) Dissociation of reward anticipation and outcome with event-related fMRI. Neuroreport 12: 3683. doi: 10.1097/00001756-200112040-00016
|
[82] | Pagnoni G, Zink CF, Montague PR, Berns GS (2002) Activity in human ventral striatum locked to errors of reward prediction. Nat Neurosci 5: 97–98. doi: 10.1038/nn802
|
[83] | Wilbertz G, van Elst LT, Delgado MR, Maier S, Feige B, et al. (2011) Orbitofrontal reward sensitivity and impulsivity in adult attention deficit hyperactivity disorder. NeuroImage 60: 353–361. doi: 10.1016/j.neuroimage.2011.12.011
|
[84] | Fayyad J, De Graaf R, Kessler R, Alonso J, Angermeyer M, et al. (2007) Cross-national prevalence and correlates of adult attention-deficit hyperactivity disorder. Br J Psychiatry 190: 402–409. doi: 10.1192/bjp.bp.106.034389
|
[85] | Kimura M (1986) The role of primate putamen neurons in the association of sensory stimuli with movement. Neurosci Res 3: 436–443. doi: 10.1016/0168-0102(86)90035-0
|
[86] | Schultz W (1999) The reward signal of midbrain dopamine neurons. News Physiol Sci 14: 249–255.
|
[87] | Plichta MM, Wolf I, Hohmann S, Baumeister S, Boecker R, et al. (2013) Simultaneous EEG and fMRI reveals a causally connected subcortical-cortical network during reward anticipation. J Neruosci 33: 14526–14533. doi: 10.1523/jneurosci.0631-13.2013
|
[88] | O’Doherty JP, Dayan P, Friston KJ, Critchley HD, Dolan RJ (2003) Temporal difference models and reward-related learning in the human brain. Neuron 38: 329–337. doi: 10.1016/s0896-6273(03)00169-7
|
[89] | Plichta MM, Scheres A (2013) Ventral–striatal responsiveness during reward anticipation in ADHD and its relation to trait impulsivity in the healthy population: A meta-analytic review of the fMRI literature. Neurosci Biobehav http://dx.doi.org doi:10.1016/j.neubiorev.2013.07.012.
|
[90] | Sonuga-Barke EJS (2005) Causal models of attention-deficit/hyperactivity disorder: from common simple deficits to multiple developmental pathways. Biol Psychiatry 57: 1231–1238. doi: 10.1016/j.biopsych.2004.09.008
|
[91] | Douglas VI, Parry PA (1994) Effects of reward and non-reward on frustration and attention in attention deficit disorder. J Abnorm Child Psych 22: 281–302. doi: 10.1007/bf02168075
|
[92] | Barkley RA (2002) Psychosocial treatments for attention-deficit/hyperactivity disorder in children. J Clin Psychiatry 63: 36–43.
|
[93] | del Campo N, Fryer TD, Hong YT, Smith R, Brichard L, et al. (2013) A positron emission tomography study of nigro-striatal dopaminergic mechanisms underlying attention: implications for ADHD and its treatment. Brain 136: 3252–3270. doi: 10.1093/brain/awt263
|