Small cell lung carcinomas (SCLCs) represent highly aggressive tumors with an overall five-year survival rate in the range of 5 to 10%. Here, we show that four out of five SCLC cell lines reversibly develop a neuron-like phenotype on extracellular matrix constituents such as fibronectin, laminin or thrombospondin upon staurosporine treatment in an RGD/integrin-mediated manner. Neurite-like processes extend rapidly with an average speed of 10 μm per hour. Depending on the cell line, staurosporine treatment affects either cell cycle arrest in G2/M phase or induction of polyploidy. Neuron-like conversion, although not accompanied by alterations in the expression pattern of a panel of neuroendocrine genes, leads to changes in protein expression as determined by two-dimensional gel electrophoresis. It is likely that SCLC cells already harbour the complete molecular repertoire to convert into a neuron-like phenotype. More extensive studies are needed to evaluate whether the conversion potential of SCLC cells is suitable for therapeutic interventions.
References
[1]
Travis WD (2010) Advances in neuroendocrine lung tumors. Ann Oncol 21 Suppl 765–71. doi: 10.1093/annonc/mdq380
[2]
Riaz SP, Lüchtenborg M, Coupland VH, Spicer J, Peake MD, et al. (2012) Trends in incidence of small cell lung cancer and all lung cancer. Lung Cancer 75: 280–284. doi: 10.1016/j.lungcan.2011.08.004
[3]
Park KS, Liang MC, Raiser DM, Zamponi R, Roach RR, et al. (2011) Characterization of the cell of origin for small cell lung cancer. Cell Cycle 10: 2806–2815. doi: 10.4161/cc.10.16.17012
[4]
Sutherland KD, Proost N, Brouns I, Adriaensen D, Song JY (2011) Cell of origin of small cell lung cancer: inactivation of Trp53 and Rb1 in distinct cell types of adult mouse lung. Cancer Cell 19: 754–764. doi: 10.1016/j.ccr.2011.04.019
[5]
Pedersen N, Mortensen S, S?rensen SB, Pedersen MW, Rieneck K, et al. (2003) Transcriptional gene expression profiling of small cell lung cancer cells. Cancer Res 63: 1943–1953.
[6]
Stovold R, Blackhall F, Meredith S, Hou J, Dive C, et al. (2012) Biomarkers for small cell lung cancer: neuroendocrine, epithelial and circulating tumour cells. Lung Cancer 76: 263–268. doi: 10.1016/j.lungcan.2011.11.015
[7]
Haddadin S, Perry MC (2011) History of small-cell lung cancer. Clin Lung Cancer 12: 87–93. doi: 10.1016/j.cllc.2011.03.002
[8]
William WN Jr, Glisson BS (2011) Novel strategies for the treatment of small-cell lung carcinoma. Nat Rev Clin Oncol 8: 611–619. doi: 10.1038/nrclinonc.2011.90
[9]
Arriola E, Ca?adas I, Arumí M, Rojo F, Rovira A, et al. (2008) Genetic changes in small cell lung carcinoma. Clin Transl Oncol 10: 189–197. doi: 10.1007/s12094-008-0181-1
[10]
D'Angelo SP, Pietanza MC (2010) The molecular pathogenesis of small cell lung cancer. Cancer Biol Ther 10: 1–10. doi: 10.4161/cbt.10.1.12045
[11]
Ablain J, de The H (2011) Revisiting the differentiation paradigm in acute promyelocytic leukemia. Blood 117: 5795–5802. doi: 10.1182/blood-2011-02-329367
[12]
Elstner E, Müller C, Koshizuka K, Williamson EA, Park D, et al. (1998) Ligands for peroxisome proliferator-activated receptorgamma and retinoic acid receptor inhibit growth and induce apoptosis of human breast cancer cells in vitro and in BNX mice. Proc Natl Acad Sci USA 95: 8806–8811. doi: 10.1073/pnas.95.15.8806
[13]
Azzi S, Bruno S, Giron-Michel J, Clay D, Devocelle A, et al. (2011) Differentiation therapy: targeting human renal cancer stem cells with interleukin 15. J Natl Cancer Inst 103: 1884–1898. doi: 10.1093/jnci/djr451
[14]
Campos B, Wan F, Farhadi M, Ernst A, Zeppernick F, et al. (2010) Differentiation therapy exerts antitumor effects on stem-like glioma cells. Clin Cancer Res 16: 2715–2728. doi: 10.1158/1078-0432.ccr-09-1800
[15]
Missale C, Codignola A, Sigala S, Finardi A, Paez-Pereda M, et al. (1998) Nerve growth factor abrogates the tumorigenicity of human small cell lung cancer cell lines. Proc Natl Acad Sci USA 95: 5366–5371. doi: 10.1073/pnas.95.9.5366
[16]
Giaccone G, Broers J, Jensen S, Fridman RI, Linnoila R, et al. (1992) Increased expression of differentiation markers can accompany laminin-induced attachment of small cell lung cancer cells. Br J Cancer 66: 488–495. doi: 10.1016/0169-5002(93)90350-7
[17]
de Leij L, Postmus PE, Buys CH, Elema JD, Ramaekers F, et al. (1985) Characterization of three new variant type cell lines derived from small cell carcinoma of the lung. Cancer Res 45: 6024–6033.
[18]
K?nig K, Meder L, Kr?ger C, Diehl L, Florin A, et al. (2013) Loss of the keratin cytoskeleton is not sufficient to induce epithelial mesenchymal transition in a novel KRAS driven sporadic lung cancer mouse model. PLoS ONE 8(3): e57996 doi:10.1371/journal.pone.0057996.
[19]
Lahm H, André S, Hoeflich A, Fischer JR, Sordat B, et al. (2001) Comprehensive galectin fingerprinting in a panel of 61 human tumor cell lines by RT-PCR and its implications for diagnostic and therapeutic procedures. J Cancer Res Clin Oncol 127: 375–386. doi: 10.1007/s004320000207
[20]
Glassmann A, Reichmann K, Scheffler B, Glas M, Veit N, et al. (2011) Pharmacological targeting of the constitutively activated MEK/MAPK-dependent signaling pathway in glioma cells inhibits cell proliferation and migration. Int J Oncol 39: 1567–1575. doi: 10.3892/ijo.2011.1165
[21]
Peterson GL (1983) Determination of total protein. Meth Enzymol 91: 95–121.
[22]
Ruoslahti E (1996) RGD and other recognition sequences for integrins. Annu Rev Cell Dev Biol 12: 697–715. doi: 10.1146/annurev.cellbio.12.1.697
[23]
Kohmo S, Kijima T, Otani Y, Mori M, Minami T, et al. (2010) Cell surface tetraspanin CD9 mediates chemoresistance in small cell lung cancer. Cancer Res 70: 8025–8035. doi: 10.1158/0008-5472.can-10-0996
[24]
Gabius HJ, André S, Gunsenh?user I, Kaltner H, Kayser G, et al. (2002) Association of galectin-1- but not galectin-3-dependent parameters with proliferation activity in human neuroblastomas and small cell lung carcinomas. Anticancer Res 22: 405–410.
[25]
Buttery R, Monaghan H, Salter DM, Sethi T (2004) Galectin-3: differential expression between small-cell and non-small-cell lung cancer. Histopathology 44: 339–344. doi: 10.1111/j.1365-2559.2004.01815.x
[26]
Kobayashi N (2002) Mechanism of the process formation; podocytes vs. neurons. Microsc Res Tech 57: 217–223. doi: 10.1002/jemt.10077
[27]
Karaman MW, Herrgard S, Treiber DK, Gallant P, Atteridge CE, et al. (2008) A quantitative analysis of kinase inhibitor selectivity. Nat Biotechnol 26: 127–132. doi: 10.1038/nbt1358
[28]
Peng HY, Liao HF (2011) Staurosporine induces megakaryocytic differentiation through the upregulation of JAK/Stat3 signaling pathway. Ann Hematol 90: 1017–1029. doi: 10.1007/s00277-011-1186-3
[29]
Schumacher A, Arnhold S, Addicks K, Doerfler W (2003) Staurosporine is a potent activator of neuronal, glial, and “CNS stem cell-like” neurosphere differentiation in murine embryonic stem cells. Mol Cell Neurosci 23: 669–680. doi: 10.1016/s1044-7431(03)00170-2
[30]
Deshmukh M, Johnson EM (2000) Staurosporine-induced neuronal death: multiple mechanisms and methodological implications. Cell Death Differ 7: 250–261. doi: 10.1038/sj.cdd.4400641
[31]
Dunai ZA, Imre G, Barna G, Korcsmaros T, Petak I, et al. (2012) Staurosporine Induces Necroptotic Cell Death under Caspase-Compromised Conditions in U937 Cells. PLoS ONE 7(7): e41945 doi:10.1371/journal.pone.0041945.
[32]
Yao R, Yoshihara M, Osada H (1997) Specific activation of a c-Jun NH2-terminal kinase isoform and induction of neurite outgrowth in PC-12 cells by staurosporine. J Biol Chem 272: 18261–18266. doi: 10.1074/jbc.272.29.18261
[33]
Hodkinson PS, Mackinnon AC, Sethi T (2007) Extracellular matrix regulation of drug resistance in small-cell lung cancer. Int J Radiat Biol 83: 733–741. doi: 10.1080/09553000701570204
[34]
Guo N, Templeton NS, Al-Barazi H, Cashel JA, Sipes JM, et al. (2000) Thrombospondin-1 promotes alpha3beta1 integrin-mediated adhesion and neurite-like outgrowth and inhibits proliferation of small cell lung carcinoma cells. Cancer Res 60: 457–466.
[35]
Grigoriou V, Shapiro IM, Cavalcanti-Adam EA, Composto RJ, Ducheyne P, et al. (2005) Apoptosis and survival of osteoblast-like cells are regulated by surface attachment. J Biol Chem 280: 1733–1739. doi: 10.1074/jbc.m402550200
[36]
Hodkinson PS, Elliott T, Wong WS, Rintoul RC, Mackinnon AC, et al. (2006) ECM overrides DNA damage-induced cell cycle arrest and apoptosis in small-cell lung cancer cells through beta1 integrin-dependent activation of PI3-kinase. Cell Death Differ 13: 1776–1788. doi: 10.1038/sj.cdd.4401849
[37]
Borges M, Linnoila RI, van de Velde HJ, Chen H, Nelkin BD, et al. (1997) An achaete-scute homologue essential for neuroendocrine differentiation in the lung. Nature 386: 852–855. doi: 10.1038/386852a0
[38]
Jiang T, Collins BJ, Jin N, Watkins DN, Brock MV (2009) Achaete-scute complex homologue 1 regulates tumor-initiating capacity in human small cell lung cancer. Cancer Res 69: 845–854. doi: 10.1158/0008-5472.can-08-2762
[39]
Faghihi F, Mehranjani MS, Mehrjerdi NZ, Baharvand H (2008) Effect of staurosporine on neural differentiation of CD133+ umbilical cord blood cells. Yakhthe Med J 10: 33–40.
[40]
Bernard B, Fest T, Prétet JL, Mougin C (2001) Staurosporine-induced apoptosis of HPV positive and negative human cervical cancer cells from different points in the cell cycle. Cell Death Differ 8: 234–244. doi: 10.1038/sj.cdd.4400796
[41]
McGahren-Murray M, Terry NH, Keyomarsi K (2006) The differential staurosporine-mediated G1 arrest in normal versus tumor cells is dependent on the retinoblastoma protein. Cancer Res 66: 9744–9753. doi: 10.1158/0008-5472.can-06-1809
Busby EC, Leistritz DF, Abraham RT, Karnitz LM, Sarkaria JN (2000) The radiosensitizing agent 7-hydroxystaurosporine (UCN-01) inhibits the DNA damage checkpoint kinase hChk1. Cancer Res 60: 2108–2112.
[44]
Thompson AF, Levin LA (2010) Neuronal differentiation by analogs of staurosporine. Neurochem Int 56: 554–560. doi: 10.1016/j.neuint.2009.12.018
[45]
Yuste VJ, Sánchez-López I, Solé C, Encinas M, Bayascas JR, et al. (2002) The prevention of the staurosporine-induced apoptosis by Bcl-X(L), but not by Bcl-2 or caspase inhibitors, allows the extensive differentiation of human neuroblastoma cells. J Neurochem 80: 126–139. doi: 10.1046/j.0022-3042.2001.00695.x