全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2014 

Tempol, an Intracellular Antioxidant, Inhibits Tissue Factor Expression, Attenuates Dendritic Cell Function, and Is Partially Protective in a Murine Model of Cerebral Malaria

DOI: 10.1371/journal.pone.0087140

Full-Text   Cite this paper   Add to My Lib

Abstract:

Background The role of intracellular radical oxygen species (ROS) in pathogenesis of cerebral malaria (CM) remains incompletely understood. Methods and Findings We undertook testing Tempol—a superoxide dismutase (SOD) mimetic and pleiotropic intracellular antioxidant—in cells relevant to malaria pathogenesis in the context of coagulation and inflammation. Tempol was also tested in a murine model of CM induced by Plasmodium berghei Anka infection. Tempol was found to prevent transcription and functional expression of procoagulant tissue factor in endothelial cells (ECs) stimulated by lipopolysaccharide (LPS). This effect was accompanied by inhibition of IL-6, IL-8, and monocyte chemoattractant protein (MCP-1) production. Tempol also attenuated platelet aggregation and human promyelocytic leukemia HL60 cells oxidative burst. In dendritic cells, Tempol inhibited LPS-induced production of TNF-α, IL-6, and IL-12p70, downregulated expression of co-stimulatory molecules, and prevented antigen-dependent lymphocyte proliferation. Notably, Tempol (20 mg/kg) partially increased the survival of mice with CM. Mechanistically, treated mice had lowered plasma levels of MCP-1, suggesting that Tempol downmodulates EC function and vascular inflammation. Tempol also diminished blood brain barrier permeability associated with CM when started at day 4 post infection but not at day 1, suggesting that ROS production is tightly regulated. Other antioxidants—such as α-phenyl N-tertiary-butyl nitrone (PBN; a spin trap), MnTe-2-PyP and MnTBAP (Mn-phorphyrin), Mitoquinone (MitoQ) and Mitotempo (mitochondrial antioxidants), M30 (an iron chelator), and epigallocatechin gallate (EGCG; polyphenol from green tea) did not improve survival. By contrast, these compounds (except PBN) inhibited Plasmodium falciparum growth in culture with different IC50s. Knockout mice for SOD1 or phagocyte nicotinamide adenine dinucleotide phosphate (NADPH) oxidase (gp91phox–/–) or mice treated with inhibitors of SOD (diethyldithiocarbamate) or NADPH oxidase (diphenyleneiodonium) did not show protection or exacerbation for CM. Conclusion Results with Tempol suggest that intracellular ROS contribute, in part, to CM pathogenesis. Therapeutic targeting of intracellular ROS in CM is discussed.

References

[1]  Miller LH, Ackerman HC, Su XZ, Wellems TE (2013) Malaria biology and disease pathogenesis: insights for new treatments. Nat Med 19: 156–167. doi: 10.1038/nm.3073
[2]  Silver KL, Higgins SJ, McDonald CR, Kain KC (2010) Complement driven innate immune response to malaria: fuelling severe malarial diseases. Cell Microbiol 12: 1036–1045. doi: 10.1111/j.1462-5822.2010.01492.x
[3]  Milner DA Jr (2010) Rethinking cerebral malaria pathology. Curr Opin Infect Dis 23: 456–463. doi: 10.1097/qco.0b013e32833c3dbe
[4]  Francischetti IM, Seydel KB, Monteiro RQ (2008) Blood coagulation, inflammation, and malaria. Microcirculation 15: 81–107. doi: 10.1080/10739680701451516
[5]  Weinberg JB, Lopansri BK, Mwaikambo E, Granger DL (2008) Arginine, nitric oxide, carbon monoxide, and endothelial function in severe malaria. Curr Opin Infect Dis 21: 468–475. doi: 10.1097/qco.0b013e32830ef5cf
[6]  Moore JM, Avery JW (2012) Defibrotide: a Swiss Army knife intervention in the battle against cerebral malaria. Arterioscler Thromb Vasc Biol 32: 541–544. doi: 10.1161/atvbaha.111.242776
[7]  Faille D, El-Assaad F, Alessi MC, Fusai T, Combes V, et al. (2009) Platelet-endothelial cell interactions in cerebral malaria: the end of a cordial understanding. Thromb Haemost 102: 1093–1102. doi: 10.1160/th09-05-0337
[8]  Opal SM, Esmon CT (2003) Bench-to-bedside review: functional relationships between coagulation and the innate immune response and their respective roles in the pathogenesis of sepsis. Crit Care 7: 23–38.
[9]  Ruf W (2004) Protease-activated receptor signaling in the regulation of inflammation. Crit Care Med 32: S287–292. doi: 10.1097/01.ccm.0000126364.46191.12
[10]  Francischetti IM, Seydel KB, Monteiro RQ, Whitten RO, Erexson CR, et al. (2007) Plasmodium falciparum-infected erythrocytes induce tissue factor expression in endothelial cells and support the assembly of multimolecular coagulation complexes. J Thromb Haemost 5: 155–165. doi: 10.1111/j.1538-7836.2006.02232.x
[11]  Francischetti IM (2008) Does activation of the blood coagulation cascade have a role in malaria pathogenesis? Trends Parasitol 24: 258–263. doi: 10.1016/j.pt.2008.03.009
[12]  Avery JW, Smith GM, Owino SO, Sarr D, Nagy T, et al. (2012) Maternal malaria induces a procoagulant and antifibrinolytic state that is embryotoxic but responsive to anticoagulant therapy. PLoS One 7: e31090. doi: 10.1371/journal.pone.0031090
[13]  Clark IA, Budd AC, Alleva LM, Cowden WB (2006) Human malarial disease: a consequence of inflammatory cytokine release. Malar J 5: 85.
[14]  Griffin JH, Zlokovic BV, Mosnier LO (2012) Protein C anticoagulant and cytoprotective pathways. Int J Hematol 95: 333–345. doi: 10.1007/s12185-012-1059-0
[15]  Esmon CT, Esmon NL (2011) The link between vascular features and thrombosis. Annu Rev Physiol 73: 503–514. doi: 10.1146/annurev-physiol-012110-142300
[16]  van der Poll T, de Boer JD, Levi M (2011) The effect of inflammation on coagulation and vice versa. Curr Opin Infect Dis 24: 273–278. doi: 10.1097/qco.0b013e328344c078
[17]  de Mast Q, Groot E, Asih PB, Syafruddin D, Oosting M, et al. (2009) ADAMTS13 deficiency with elevated levels of ultra-large and active von Willebrand factor in P. falciparum and P. vivax malaria. Am J Trop Med Hyg 80: 492–498.
[18]  de Mast Q, de Groot PG, van Heerde WL, Roestenberg M, van Velzen JF, et al. (2010) Thrombocytopenia in early malaria is associated with GP1b shedding in absence of systemic platelet activation and consumptive coagulopathy. Br J Haematol 151: 495–503. doi: 10.1111/j.1365-2141.2010.08399.x
[19]  Dasari P, Heber SD, Beisele M, Torzewski M, Reifenberg K, et al. (2012) Digestive vacuole of Plasmodium falciparum released during erythrocyte rupture dually activates complement and coagulation. Blood 119: 4301–4310. doi: 10.1182/blood-2011-11-392134
[20]  Larkin D, de Laat B, Jenkins PV, Bunn J, Craig AG, et al. (2009) Severe Plasmodium falciparum malaria is associated with circulating ultra-large von Willebrand multimers and ADAMTS13 inhibition. PLoS Pathog 5: e1000349. doi: 10.1371/journal.ppat.1000349
[21]  Dennis LH, Eichelberger JW, Inman MM, Conrad ME (1967) Depletion of coagulation factors in drug-resistant Plasmodium falciparum malaria. Blood 29: 713–721.
[22]  Hemmer CJ, Kern P, Holst FG, Radtke KP, Egbring R, et al. (1991) Activation of the host response in human Plasmodium falciparum malaria: relation of parasitemia to tumor necrosis factor/cachectin, thrombin-antithrombin III, and protein C levels. Am J Med 91: 37–44. doi: 10.1016/0002-9343(91)90071-5
[23]  Lucchi NW, Sarr D, Owino SO, Mwalimu SM, Peterson DS, et al. (2011) Natural hemozoin stimulates syncytiotrophoblast to secrete chemokines and recruit peripheral blood mononuclear cells. Placenta 32: 579–585. doi: 10.1016/j.placenta.2011.05.003
[24]  Finney CA, Hawkes CA, Kain DC, Dhabangi A, Musoke C, et al. (2011) S1P is associated with protection in human and experimental cerebral malaria. Mol Med 17: 717–725.
[25]  Ndonwi M, Burlingame OO, Miller AS, Tollefsen DM, Broze GJ Jr, et al. (2011) Inhibition of antithrombin by Plasmodium falciparum histidine-rich protein II. Blood.
[26]  Francischetti IM, Oliveira CJ, Ostera GR, Yager SB, Debierre-Grockiego F, et al. (2012) Defibrotide interferes with several steps of the coagulation-inflammation cycle and exhibits therapeutic potential to treat severe malaria. Arterioscler Thromb Vasc Biol 32: 786–798. doi: 10.1161/atvbaha.111.240291
[27]  Rowe JA, Claessens A, Corrigan RA, Arman M (2009) Adhesion of Plasmodium falciparum-infected erythrocytes to human cells: molecular mechanisms and therapeutic implications. Expert Rev Mol Med 11: e16. doi: 10.1017/s1462399409001082
[28]  Higgins SJ, Kain KC, Liles WC (2011) Immunopathogenesis of falciparum malaria: implications for adjunctive therapy in the management of severe and cerebral malaria. Expert Rev Anti Infect Ther 9: 803–819. doi: 10.1586/eri.11.96
[29]  Fairhurst RM, Bess CD, Krause MA (2012) Abnormal PfEMP1/knob display on Plasmodium falciparum-infected erythrocytes containing hemoglobin variants: fresh insights into malaria pathogenesis and protection. Microbes Infect 14: 851–862. doi: 10.1016/j.micinf.2012.05.006
[30]  O'Leary DS, Barr CF, Wellde BT, Conrad ME (1972) Experimental infection with Plasmodium falciparum in Aotus monkeys. 3. The development of disseminated intravascular coagulation. Am J Trop Med Hyg 21: 282–287.
[31]  Conrad ME (1969) Pathophysiology of malaria. Hematologic observations in human and animal studies. Ann Intern Med 70: 134–141. doi: 10.7326/0003-4819-70-1-134
[32]  Moreno A, Cabrera-Mora M, Garcia A, Orkin J, Strobert E, et al. (2013) Plasmodium coatneyi in rhesus macaques replicates the multisystemic dysfunction of severe malaria in humans. Infect Immun 81: 1889–1904. doi: 10.1128/iai.00027-13
[33]  Pecanha LM, Assreuy Filho J, Cordeiro RS (1988) Plasmodium berghei: pulmonary oedema and changes in clotting and fibrinolysis during infection in mice. Ann Trop Med Parasitol 82: 429–436.
[34]  Reiner G, Clemens R, Bock HL, Enders B (1991) Coagulation disorders in experimentally induced acute mouse malaria. Acta Trop 50: 59–66. doi: 10.1016/0001-706x(91)90073-s
[35]  Manwell RD, Allen CS (1976) Blood clotting in pinottii malaria. J Parasitol 62: 110. doi: 10.2307/3279052
[36]  Becker K, Tilley L, Vennerstrom JL, Roberts D, Rogerson S, et al. (2004) Oxidative stress in malaria parasite-infected erythrocytes: host-parasite interactions. Int J Parasitol 34: 163–189. doi: 10.1016/j.ijpara.2003.09.011
[37]  Percario S, Moreira DR, Gomes BA, Ferreira ME, Goncalves AC, et al. (2012) Oxidative stress in malaria. Int J Mol Sci 13: 16346–16372. doi: 10.3390/ijms131216346
[38]  Niessen F, Schaffner F, Furlan-Freguia C, Pawlinski R, Bhattacharjee G, et al. (2008) Dendritic cell PAR1-S1P3 signalling couples coagulation and inflammation. Nature 452: 654–658. doi: 10.1038/nature06663
[39]  Debierre-Grockiego F, Schwarz RT (2010) Immunological reactions in response to apicomplexan glycosylphosphatidylinositols. Glycobiology 20: 801–811. doi: 10.1093/glycob/cwq038
[40]  Pamplona A, Ferreira A, Balla J, Jeney V, Balla G, et al. (2007) Heme oxygenase-1 and carbon monoxide suppress the pathogenesis of experimental cerebral malaria. Nat Med 13: 703–710. doi: 10.1038/nm1586
[41]  Gozzelino R, Andrade BB, Larsen R, Luz NF, Vanoaica L, et al. (2012) Metabolic adaptation to tissue iron overload confers tolerance to malaria. Cell Host Microbe 12: 693–704. doi: 10.1016/j.chom.2012.10.011
[42]  Guha M, Kumar S, Choubey V, Maity P, Bandyopadhyay U (2006) Apoptosis in liver during malaria: role of oxidative stress and implication of mitochondrial pathway. Faseb J 20: 1224–1226. doi: 10.1096/fj.05-5338fje
[43]  Dey S, Bindu S, Goyal M, Pal C, Alam A, et al. (2012) Impact of intravascular hemolysis in malaria on liver dysfunction: involvement of hepatic free heme overload, NF-kappaB activation, and neutrophil infiltration. J Biol Chem 287: 26630–26646. doi: 10.1074/jbc.m112.341255
[44]  Greve B, Kremsner PG, Lell B, Luckner D, Schmid D (2000) Malarial anaemia in African children associated with high oxygen-radical production. Lancet 355: 40–41. doi: 10.1016/s0140-6736(99)04761-3
[45]  Greve B, Lehman LG, Lell B, Luckner D, Schmidt-Ott R, et al. (1999) High oxygen radical production is associated with fast parasite clearance in children with Plasmodium falciparum malaria. J Infect Dis 179: 1584–1586. doi: 10.1086/314780
[46]  Das BS, Patnaik JK, Mohanty S, Mishra SK, Mohanty D, et al. (1993) Plasma antioxidants and lipid peroxidation products in falciparum malaria. Am J Trop Med Hyg 49: 720–725.
[47]  Charunwatthana P, Abul Faiz M, Ruangveerayut R, Maude RJ, Rahman MR, et al. (2009) N-acetylcysteine as adjunctive treatment in severe malaria: a randomized, double-blinded placebo-controlled clinical trial. Crit Care Med 37: 516–522. doi: 10.1097/ccm.0b013e3181958dfd
[48]  Griffiths MJ, Ndungu F, Baird KL, Muller DP, Marsh K, et al. (2001) Oxidative stress and erythrocyte damage in Kenyan children with severe Plasmodium falciparum malaria. Br J Haematol 113: 486–491. doi: 10.1046/j.1365-2141.2001.02758.x
[49]  Pabon A, Carmona J, Burgos LC, Blair S (2003) Oxidative stress in patients with non-complicated malaria. Clin Biochem 36: 71–78. doi: 10.1016/s0009-9120(02)00423-x
[50]  Narsaria N, Mohanty C, Das BK, Mishra SP, Prasad R (2012) Oxidative stress in children with severe malaria. J Trop Pediatr 58: 147–150. doi: 10.1093/tropej/fmr043
[51]  Jiang F, Zhang Y, Dusting GJ (2011) NADPH oxidase-mediated redox signaling: roles in cellular stress response, stress tolerance, and tissue repair. Pharmacol Rev 63: 218–242. doi: 10.1124/pr.110.002980
[52]  Finkel T (2011) Signal transduction by reactive oxygen species. J Cell Biol 194: 7–15. doi: 10.1083/jcb.201102095
[53]  Widlansky ME, Gutterman DD (2011) Regulation of endothelial function by mitochondrial reactive oxygen species. Antioxid Redox Signal 15: 1517–1530. doi: 10.1089/ars.2010.3642
[54]  Leonarduzzi G, Sottero B, Testa G, Biasi F, Poli G (2011) New insights into redox-modulated cell signaling. Curr Pharm Des 17: 3994–4006. doi: 10.2174/138161211798764906
[55]  Kluge MA, Fetterman JL, Vita JA (2013) Mitochondria and endothelial function. Circ Res 112: 1171–1188. doi: 10.1161/circresaha.111.300233
[56]  Smith RA, Hartley RC, Cocheme HM, Murphy MP (2012) Mitochondrial pharmacology. Trends Pharmacol Sci 33: 341–352. doi: 10.1016/j.tips.2012.03.010
[57]  Wilcox CS (2010) Effects of tempol and redox-cycling nitroxides in models of oxidative stress. Pharmacol Ther 126: 119–145. doi: 10.1016/j.pharmthera.2010.01.003
[58]  Batinic-Haberle I, Reboucas JS, Spasojevic I (2010) Superoxide dismutase mimics: chemistry, pharmacology, and therapeutic potential. Antioxid Redox Signal 13: 877–918. doi: 10.1089/ars.2009.2876
[59]  Thuma PE, Mabeza GF, Biemba G, Bhat GJ, McLaren CE, et al. (1998) Effect of iron chelation therapy on mortality in Zambian children with cerebral malaria. Trans R Soc Trop Med Hyg 92: 214–218. doi: 10.1016/s0035-9203(98)90753-2
[60]  Thumwood CM, Hunt NH, Cowden WB, Clark IA (1989) Antioxidants can prevent cerebral malaria in Plasmodium berghei-infected mice. Br J Exp Pathol 70: 293–303.
[61]  Sanni LA, Fu S, Dean RT, Bloomfield G, Stocker R, et al. (1999) Are reactive oxygen species involved in the pathogenesis of murine cerebral malaria? J Infect Dis 179: 217–222. doi: 10.1086/314552
[62]  Linares M, Marin-Garcia P, Martinez-Chacon G, Perez-Benavente S, Puyet A, et al. (2013) Glutathione peroxidase contributes with heme oxygenase-1 to redox balance in mouse brain during the course of cerebral malaria. Biochim Biophys Acta 1832: 2009–2018. doi: 10.1016/j.bbadis.2013.07.010
[63]  Reis PA, Comim CM, Hermani F, Silva B, Barichello T, et al. (2010) Cognitive dysfunction is sustained after rescue therapy in experimental cerebral malaria, and is reduced by additive antioxidant therapy. PLoS Pathog 6: e1000963. doi: 10.1371/journal.ppat.1000963
[64]  Reis PA, Estato V, da Silva TI, d'Avila JC, Siqueira LD, et al. (2012) Statins decrease neuroinflammation and prevent cognitive impairment after cerebral malaria. PLoS Pathog 8: e1003099. doi: 10.1371/journal.ppat.1003099
[65]  Samuni Y, Goldstein S, Dean OM, Berk M (2013) The chemistry and biological activities of N-acetylcysteine. Biochim Biophys Acta 1830: 4117–4129. doi: 10.1016/j.bbagen.2013.04.016
[66]  Metz JM, Smith D, Mick R, Lustig R, Mitchell J, et al. (2004) A phase I study of topical Tempol for the prevention of alopecia induced by whole brain radiotherapy. Clin Cancer Res 10: 6411–6417. doi: 10.1158/1078-0432.ccr-04-0658
[67]  Banfi C, Brioschi M, Lento S, Pirillo A, Galli S, et al. (2011) Statins prevent tissue factor induction by protease-activated receptors 1 and 2 in human umbilical vein endothelial cells in vitro. J Thromb Haemost 9: 1608–1619. doi: 10.1111/j.1538-7836.2011.04366.x
[68]  Oliveira F, Lawyer PG, Kamhawi S, Valenzuela JG (2008) Immunity to distinct sand fly salivary proteins primes the anti-Leishmania immune response towards protection or exacerbation of disease. PLoS Negl Trop Dis 2: e226. doi: 10.1371/journal.pntd.0000226
[69]  Kanegasaki S, Nomura Y, Nitta N, Akiyama S, Tamatani T, et al. (2003) A novel optical assay system for the quantitative measurement of chemotaxis. J Immunol Methods 282: 1–11. doi: 10.1016/j.jim.2003.07.008
[70]  Assumpcao TC, Ma D, Schwarz A, Reiter K, Santana JM, et al. (2013) Salivary antigen-5/CAP family members are Cu2+-dependent antioxidant enzymes that scavenge O(2)(-). and inhibit collagen-induced platelet aggregation and neutrophil oxidative burst. J Biol Chem 288: 14341–14361. doi: 10.1074/jbc.m113.466995
[71]  Sa-Nunes A, Bafica A, Lucas DA, Conrads TP, Veenstra TD, et al. (2007) Prostaglandin E2 is a major inhibitor of dendritic cell maturation and function in Ixodes scapularis saliva. J Immunol 179: 1497–1505. doi: 10.4049/jimmunol.179.3.1497
[72]  Sa-Nunes A, Bafica A, Antonelli LR, Choi EY, Francischetti IM, et al. (2009) The immunomodulatory action of sialostatin L on dendritic cells reveals its potential to interfere with autoimmunity. J Immunol 182: 7422–7429. doi: 10.4049/jimmunol.0900075
[73]  Crompton PD, Miura K, Traore B, Kayentao K, Ongoiba A, et al. (2010) In vitro growth-inhibitory activity and malaria risk in a cohort study in mali. Infect Immun 78: 737–745. doi: 10.1128/iai.00960-09
[74]  Malkin EM, Diemert DJ, McArthur JH, Perreault JR, Miles AP, et al. (2005) Phase 1 clinical trial of apical membrane antigen 1: an asexual blood-stage vaccine for Plasmodium falciparum malaria. Infect Immun 73: 3677–3685. doi: 10.1128/iai.73.6.3677-3685.2005
[75]  Waisberg M, Tarasenko T, Vickers BK, Scott BL, Willcocks LC, et al. (2011) Genetic susceptibility to systemic lupus erythematosus protects against cerebral malaria in mice. Proc Natl Acad Sci U S A 108: 1122–1127. doi: 10.1073/pnas.1017996108
[76]  Waisberg M, Lin CK, Huang CY, Pena M, Orandle M, et al. (2013) The impact of genetic susceptibility to systemic lupus erythematosus on placental malaria in mice. PLoS One 8: e62820. doi: 10.1371/journal.pone.0062820
[77]  Chatterjee PK, Cuzzocrea S, Brown PA, Zacharowski K, Stewart KN, et al. (2000) Tempol, a membrane-permeable radical scavenger, reduces oxidant stress-mediated renal dysfunction and injury in the rat. Kidney Int 58: 658–673. doi: 10.1046/j.1523-1755.2000.00212.x
[78]  Oberley-Deegan RE, Lee YM, Morey GE, Cook DM, Chan ED, et al. (2009) The antioxidant mimetic, MnTE-2-PyP, reduces intracellular growth of Mycobacterium abscessus. Am J Respir Cell Mol Biol 41: 170–178. doi: 10.1165/rcmb.2008-0138oc
[79]  Hall ED, Vaishnav RA, Mustafa AG (2010) Antioxidant therapies for traumatic brain injury. Neurotherapeutics 7: 51–61. doi: 10.1016/j.nurt.2009.10.021
[80]  Singh BN, Shankar S, Srivastava RK (2011) Green tea catechin, epigallocatechin-3-gallate (EGCG): mechanisms, perspectives and clinical applications. Biochem Pharmacol 82: 1807–1821. doi: 10.1016/j.bcp.2011.07.093
[81]  Gal S, Fridkin M, Amit T, Zheng H, Youdim MB (2006) M30, a novel multifunctional neuroprotective drug with potent iron chelating and brain selective monoamine oxidase-ab inhibitory activity for Parkinson's disease. J Neural Transm Suppl: 447–456.
[82]  Trnka J, Blaikie FH, Logan A, Smith RA, Murphy MP (2009) Antioxidant properties of MitoTEMPOL and its hydroxylamine. Free Radic Res 43: 4–12. doi: 10.1080/10715760802582183
[83]  Mukhopadhyay P, Horvath B, Zsengeller Z, Zielonka J, Tanchian G, et al. (2012) Mitochondrial-targeted antioxidants represent a promising approach for prevention of cisplatin-induced nephropathy. Free Radic Biol Med 52: 497–506. doi: 10.1016/j.freeradbiomed.2011.11.001
[84]  Ghosh A, Chandran K, Kalivendi SV, Joseph J, Antholine WE, et al. (2010) Neuroprotection by a mitochondria-targeted drug in a Parkinson's disease model. Free Radic Biol Med 49: 1674–1684. doi: 10.1016/j.freeradbiomed.2010.08.028
[85]  Batinic-Haberle I, Cuzzocrea S, Reboucas JS, Ferrer-Sueta G, Mazzon E, et al. (2009) Pure MnTBAP selectively scavenges peroxynitrite over superoxide: comparison of pure and commercial MnTBAP samples to MnTE-2-PyP in two models of oxidative stress injury, an SOD-specific Escherichia coli model and carrageenan-induced pleurisy. Free Radic Biol Med 46: 192–201. doi: 10.1016/j.freeradbiomed.2008.09.042
[86]  Cocco D, Calabrese L, Rigo A, Argese E, Rotilio G (1981) Re-examination of the reaction of diethyldithiocarbamate with the copper of superoxide dismutase. J Biol Chem 256: 8983–8986.
[87]  Kono H, Rusyn I, Uesugi T, Yamashina S, Connor HD, et al. (2001) Diphenyleneiodonium sulfate, an NADPH oxidase inhibitor, prevents early alcohol-induced liver injury in the rat. Am J Physiol Gastrointest Liver Physiol 280: G1005–1012.
[88]  Gatley SJ, Martin JL (1979) Some aspects of the pharmacology of diphenyleneiodonium, a bivalent iodine compound. Xenobiotica 9: 539–546. doi: 10.3109/00498257909042319
[89]  Cooper JM, Petty RK, Hayes DJ, Morgan-Hughes JA, Clark JB (1988) Chronic administration of the oral hypoglycaemic agent diphenyleneiodonium to rats. An animal model of impaired oxidative phosphorylation (mitochondrial myopathy). Biochem Pharmacol 37: 687–694. doi: 10.1016/0006-2952(88)90143-8
[90]  Cooper JM, Petty RK, Hayes DJ, Challiss RA, Brosnan MJ, et al. (1988) An animal model of mitochondrial myopathy: a biochemical and physiological investigation of rats treated in vivo with the NADH-CoQ reductase inhibitor, diphenyleneiodonium. J Neurol Sci 83: 335–347. doi: 10.1016/0022-510x(88)90079-2
[91]  Luyendyk JP, Piper JD, Tencati M, Reddy KV, Holscher T, et al. (2007) A novel class of antioxidants inhibit LPS induction of tissue factor by selective inhibition of the activation of ASK1 and MAP kinases. Arterioscler Thromb Vasc Biol 27: 1857–1863. doi: 10.1161/atvbaha.107.143552
[92]  Mackman N (1997) Regulation of the tissue factor gene. Thromb Haemost 78: 747–754.
[93]  Massberg S, Grahl L, von Bruehl ML, Manukyan D, Pfeiler S, et al. (2010) Reciprocal coupling of coagulation and innate immunity via neutrophil serine proteases. Nat Med 16: 887–896. doi: 10.1038/nm.2184
[94]  Higuchi DA, Wun TC, Likert KM, Broze GJ Jr (1992) The effect of leukocyte elastase on tissue factor pathway inhibitor. Blood 79: 1712–1719.
[95]  Krotz F, Sohn HY, Pohl U (2004) Reactive oxygen species: players in the platelet game. Arterioscler Thromb Vasc Biol 24: 1988–1996. doi: 10.1161/01.atv.0000145574.90840.7d
[96]  Watson SP (2009) Platelet activation by extracellular matrix proteins in haemostasis and thrombosis. Curr Pharm Des 15: 1358–1372. doi: 10.2174/138161209787846702
[97]  Matsue H, Edelbaum D, Shalhevet D, Mizumoto N, Yang C, et al. (2003) Generation and function of reactive oxygen species in dendritic cells during antigen presentation. J Immunol 171: 3010–3018. doi: 10.4049/jimmunol.171.6.3010
[98]  Krishna MC, Russo A, Mitchell JB, Goldstein S, Dafni H, et al. (1996) Do nitroxide antioxidants act as scavengers of O2-. or as SOD mimics? J Biol Chem 271: 26026–26031. doi: 10.1074/jbc.271.42.26026
[99]  Cuzzocrea S, Pisano B, Dugo L, Ianaro A, Patel NS, et al. (2004) Tempol reduces the activation of nuclear factor-kappaB in acute inflammation. Free Radic Res 38: 813–819. doi: 10.1080/10715760410001710829
[100]  Pendurthi UR, Williams JT, Rao LV (1999) Resveratrol, a polyphenolic compound found in wine, inhibits tissue factor expression in vascular cells : A possible mechanism for the cardiovascular benefits associated with moderate consumption of wine. Arterioscler Thromb Vasc Biol 19: 419–426. doi: 10.1161/01.atv.19.2.419
[101]  Kim YS, Ahn Y, Hong MH, Kim KH, Park HW, et al. (2007) Rosuvastatin suppresses the inflammatory responses through inhibition of c-Jun N-terminal kinase and Nuclear Factor-kappaB in endothelial cells. J Cardiovasc Pharmacol 49: 376–383. doi: 10.1097/fjc.0b013e31804a5e34
[102]  Banfi C, Brioschi M, Barbieri SS, Eligini S, Barcella S, et al. (2009) Mitochondrial reactive oxygen species: a common pathway for PAR1- and PAR2-mediated tissue factor induction in human endothelial cells. J Thromb Haemost 7: 206–216. doi: 10.1111/j.1538-7836.2008.03204.x
[103]  Owens AP 3rd, Passam FH, Antoniak S, Marshall SM, McDaniel AL, et al. (2012) Monocyte tissue factor-dependent activation of coagulation in hypercholesterolemic mice and monkeys is inhibited by simvastatin. J Clin Invest 122: 558–568. doi: 10.1172/jci58969
[104]  Steiner S, Speidl WS, Pleiner J, Seidinger D, Zorn G, et al. (2005) Simvastatin blunts endotoxin-induced tissue factor in vivo. Circulation 111: 1841–1846. doi: 10.1161/01.cir.0000158665.27783.0c
[105]  Pino P, Vouldoukis I, Dugas N, Hassani-Loppion G, Dugas B, et al. (2003) Redox-dependent apoptosis in human endothelial cells after adhesion of Plasmodium falciparum-infected erythrocytes. Ann N Y Acad Sci 1010: 582–586. doi: 10.1196/annals.1299.109
[106]  Taoufiq Z, Pino P, Dugas N, Conti M, Tefit M, et al. (2006) Transient supplementation of superoxide dismutase protects endothelial cells against Plasmodium falciparum-induced oxidative stress. Mol Biochem Parasitol 150: 166–173. doi: 10.1016/j.molbiopara.2006.07.008
[107]  Bierhaus A, Hemmer CJ, Mackman N, Kutob R, Ziegler R, et al. (1995) Antiparasitic treatment of patients with P. falciparum malaria reduces the ability of patient serum to induce tissue factor by decreasing NF-kappa B activation. Thromb Haemost 73: 39–48.
[108]  Pino P, Vouldoukis I, Kolb JP, Mahmoudi N, Desportes-Livage I, et al. (2003) Plasmodium falciparum—infected erythrocyte adhesion induces caspase activation and apoptosis in human endothelial cells. J Infect Dis 187: 1283–1290. doi: 10.1086/373992
[109]  Tripathi AK, Sullivan DJ, Stins MF (2006) Plasmodium falciparum-infected erythrocytes increase intercellular adhesion molecule 1 expression on brain endothelium through NF-kappaB. Infect Immun 74: 3262–3270. doi: 10.1128/iai.01625-05
[110]  Hawkes M, Elphinstone RE, Conroy AL, Kain KC (2013) Contrasting pediatric and adult cerebral malaria: the role of the endothelial barrier. Virulence 4: 543–555. doi: 10.4161/viru.25949
[111]  Punsawad C, Krudsood S, Maneerat Y, Chaisri U, Tangpukdee N, et al. (2012) Activation of nuclear factor kappa B in peripheral blood mononuclear cells from malaria patients. Malar J 11: 191. doi: 10.1186/1475-2875-11-191
[112]  Griffith JW, Sun T, McIntosh MT, Bucala R (2009) Pure Hemozoin is inflammatory in vivo and activates the NALP3 inflammasome via release of uric acid. J Immunol 183: 5208–5220. doi: 10.4049/jimmunol.0713552
[113]  Punsawad C, Maneerat Y, Chaisri U, Nantavisai K, Viriyavejakul P (2013) Nuclear factor kappa B modulates apoptosis in the brain endothelial cells and intravascular leukocytes of fatal cerebral malaria. Malar J 12: 260. doi: 10.1186/1475-2875-12-260
[114]  Seixas E, Moura Nunes JF, Matos I, Coutinho A (2009) The interaction between DC and Plasmodium berghei/chabaudi-infected erythrocytes in mice involves direct cell-to-cell contact, internalization and TLR. Eur J Immunol 39: 1850–1863. doi: 10.1002/eji.200838403
[115]  Li X, Syrovets T, Paskas S, Laumonnier Y, Simmet T (2008) Mature dendritic cells express functional thrombin receptors triggering chemotaxis and CCL18/pulmonary and activation-regulated chemokine induction. J Immunol 181: 1215–1223. doi: 10.4049/jimmunol.181.2.1215
[116]  Ruf W, Furlan-Freguia C, Niessen F (2009) Vascular and dendritic cell coagulation signaling in sepsis progression. J Thromb Haemost 7 Suppl 1118–121. doi: 10.1111/j.1538-7836.2009.03374.x
[117]  Villegas-Mendez A, Greig R, Shaw TN, de Souza JB, Gwyer Findlay E, et al. (2012) IFN-gamma-producing CD4+ T cells promote experimental cerebral malaria by modulating CD8+ T cell accumulation within the brain. J Immunol 189: 968–979. doi: 10.4049/jimmunol.1200688
[118]  Phillipson M, Kubes P (2011) The neutrophil in vascular inflammation. Nat Med 17: 1381–1390. doi: 10.1038/nm.2514
[119]  Postma NS, Mommers EC, Eling WM, Zuidema J (1996) Oxidative stress in malaria; implications for prevention and therapy. Pharm World Sci 18: 121–129. doi: 10.1007/bf00717727
[120]  Paiva CN, Bozza MT (2013) Are Reactive Oxygen Species Always Detrimental to Pathogens? Antioxid Redox Signal.
[121]  Schober A (2008) Chemokines in vascular dysfunction and remodeling. Arterioscler Thromb Vasc Biol 28: 1950–1959. doi: 10.1161/atvbaha.107.161224
[122]  Charo IF, Taubman MB (2004) Chemokines in the pathogenesis of vascular disease. Circ Res 95: 858–866. doi: 10.1161/01.res.0000146672.10582.17
[123]  Seydel KB, Milner DA Jr, Kamiza SB, Molyneux ME, Taylor TE (2006) The distribution and intensity of parasite sequestration in comatose Malawian children. J Infect Dis 194: 208–205. doi: 10.1086/505078
[124]  Liu M, Amodu AS, Pitts S, Patrickson J, Hibbert JM, et al. (2012) Heme mediated STAT3 activation in severe malaria. PLoS One 7: e34280. doi: 10.1371/journal.pone.0034280
[125]  Anidi IU, Servinsky LE, Rentsendorj O, Stephens RS, Scott AL, et al. (2013) CD36 and Fyn kinase mediate malaria-induced lung endothelial barrier dysfunction in mice infected with Plasmodium berghei. PLoS One 8: e71010. doi: 10.1371/journal.pone.0071010
[126]  Prommano O, Chaisri U, Turner GD, Wilairatana P, Ferguson DJ, et al. (2005) A quantitative ultrastructural study of the liver and the spleen in fatal falciparum malaria. Southeast Asian J Trop Med Public Health 36: 1359–1370.
[127]  Fraser PA (2011) The role of free radical generation in increasing cerebrovascular permeability. Free Radic Biol Med 51: 967–977. doi: 10.1016/j.freeradbiomed.2011.06.003
[128]  Pino P, Taoufiq Z, Nitcheu J, Vouldoukis I, Mazier D (2005) Blood-brain barrier breakdown during cerebral malaria: suicide or murder? Thromb Haemost 94: 336–340. doi: 10.1160/th05-05-0354
[129]  Nacer A, Movila A, Baer K, Mikolajczak SA, Kappe SH, et al. (2012) Neuroimmunological blood brain barrier opening in experimental cerebral malaria. PLoS Pathog 8: e1002982. doi: 10.1371/journal.ppat.1002982
[130]  Lochhead JJ, McCaffrey G, Quigley CE, Finch J, DeMarco KM, et al. (2010) Oxidative stress increases blood-brain barrier permeability and induces alterations in occludin during hypoxia-reoxygenation. J Cereb Blood Flow Metab 30: 1625–1636. doi: 10.1038/jcbfm.2010.29
[131]  Tsuhako MH, Augusto O, Linares E, Chadi G, Giorgio S, et al. (2010) Tempol ameliorates murine viral encephalomyelitis by preserving the blood-brain barrier, reducing viral load, and lessening inflammation. Free Radic Biol Med 48: 704–712. doi: 10.1016/j.freeradbiomed.2009.12.013
[132]  von Montfort C, Matias N, Fernandez A, Fucho R, Conde de la Rosa L, et al. (2012) Mitochondrial GSH determines the toxic or therapeutic potential of superoxide scavenging in steatohepatitis. J Hepatol 57: 852–859. doi: 10.1016/j.jhep.2012.05.024
[133]  Andrade BB, Reis-Filho A, Souza-Neto SM, Raffaele-Netto I, Camargo LM, et al. (2010) Plasma superoxide dismutase-1 as a surrogate marker of vivax malaria severity. PLoS Negl Trop Dis 4: e650. doi: 10.1371/journal.pntd.0000650
[134]  Trnka J, Blaikie FH, Smith RA, Murphy MP (2008) A mitochondria-targeted nitroxide is reduced to its hydroxylamine by ubiquinol in mitochondria. Free Radic Biol Med 44: 1406–1419. doi: 10.1016/j.freeradbiomed.2007.12.036
[135]  Zhu JH, Lei XG (2011) Lipopolysaccharide-induced hepatic oxidative injury is not potentiated by knockout of GPX1 and SOD1 in mice. Biochem Biophys Res Commun 404: 559–563. doi: 10.1016/j.bbrc.2010.12.025
[136]  Golenser J, Peled-Kamar M, Schwartz E, Friedman I, Groner Y, et al. (1998) Transgenic mice with elevated level of CuZnSOD are highly susceptible to malaria infection. Free Radic Biol Med 24: 1504–1510. doi: 10.1016/s0891-5849(98)00026-4
[137]  Goyal M, Alam A, Bandyopadhyay U (2012) Redox regulation in malaria: current concepts and pharmacotherapeutic implications. Curr Med Chem 19: 1475–1503. doi: 10.2174/092986712799828328
[138]  Schwartz E, Samuni A, Friedman I, Hempelmann E, Golenser J (1999) The role of superoxide dismutation in malaria parasites. Inflammation 23: 361–370.
[139]  Karlsson M, Hempel C, Sjovall F, Hansson MJ, Kurtzhals JA, et al. (2013) Brain mitochondrial function in a murine model of cerebral malaria and the therapeutic effects of rhEPO. Int J Biochem Cell Biol 45: 151–155. doi: 10.1016/j.biocel.2012.08.008
[140]  Langhorne J, Buffet P, Galinski M, Good M, Harty J, et al. (2011) The relevance of non-human primate and rodent malaria models for humans. Malar J 10: 23. doi: 10.1186/1475-2875-10-23
[141]  Tardif JC, McMurray JJ, Klug E, Small R, Schumi J, et al. (2008) Effects of succinobucol (AGI-1067) after an acute coronary syndrome: a randomised, double-blind, placebo-controlled trial. Lancet 371: 1761–1768. doi: 10.1016/s0140-6736(08)60763-1
[142]  Snow BJ, Rolfe FL, Lockhart MM, Frampton CM, O'Sullivan JD, et al. (2010) A double-blind, placebo-controlled study to assess the mitochondria-targeted antioxidant MitoQ as a disease-modifying therapy in Parkinson's disease. Mov Disord 25: 1670–1674. doi: 10.1002/mds.23148

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133