全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2014 

Functional Androdioecy in Critically Endangered Gymnocladus assamicus (Leguminosae) in the Eastern Himalayan Region of Northeast India

DOI: 10.1371/journal.pone.0087287

Full-Text   Cite this paper   Add to My Lib

Abstract:

Gymnocladus assamicus is a critically endangered tree species endemic to Northeast India, and shows sexual dimorphism with male and hermaphrodite flowers on separate trees. We studied phenology, reproductive biology and mating system of the species. The flowers are small, tubular, odorless and last for about 96 hours. Pollen grains in both morphs were viable and capable of fertilization leading to fruit and seed set. Scanning electron micrographs revealed morphologically similar pollen in both male and hermaphrodite flowers. The fruit set in open pollinated flowers was 43.61 percent, while controlled autogamous and geitonogamous pollinations yielded 76.81 and 65.58 percent fruit set respectively. Xenogamous pollinations between male and hermaphrodite flowers resulted in 56.85 percent fruit set and pollinations between hermaphrodite flowers yielded 67.90 percent fruit set. This indicates a functionally androdioecious mating system and pollination limited fruit set in G. assamicus. Phylogenetic analyses of Gymnocladus and the sister genus Gleditsia are needed to assess if the androdioecious mating system in G. assamicus evolved from dioecy as a result of selection for hermaphrodites for reproductive assurance during colonization of pollination limited high altitude ecosystems.

References

[1]  Roskov YR, Bisby FA, Zarucchi JL, Schrire BD, White RJ (2005) ILDIS World Database of Legumes: draft checklist, version 10, ILDIS, University of Reading, Reading, UK.
[2]  Lee YT (1976) The genus Gymnocladus and its tropical affinity. J Arnold Arbor 57 (1) 91–112.
[3]  Schnabel A, Mcdonel PE, Wendel JF (2003) Phylogenetic relationships in Gleditsia (Leguminosae) based on ITS sequences. Am J Bot 90: 310–320. doi: 10.3732/ajb.90.2.310
[4]  Sanjappa M (2002) Gleditsia and Gymnocladus Lam. (Leguminosae-Caesalpiniodeae) in India. In: Rao RR, editor. Advances in Legume research in India. Dehradun, India: Bishen Singh Mahendra Pal Singh. pp. 27–34.
[5]  Choudhury BI, Khan ML, Arunachalam A, Das AK (2007) Ecology and Conservation of the Critically Endangered Tree Species Gymnocladus assamicus in Arunachal Pradesh, India. Research Letters in Ecology 2007: 1–5. doi: 10.1155/2007/59282
[6]  Menon S, Choudhury BI, Khan ML, Peterson AT (2010) Ecological niche modeling and local knowledge predict new populations of Gymnocladus assamicus a critically endangered tree species. Endanger Species Res 11: 175–181. doi: 10.3354/esr00275
[7]  Dezhao C, Dianxiang Z, Larsen K (2010) GYMNOCLADUS Lamarck, Encycl. 1: 733. 1785, nom. cons. Flora of China 10: 36.
[8]  Herendeen PS, Lewis GP, Bruneau A (2003) Floral morphology in caesalpinioid legumes: testing the monophyly of the “Umtiza clade”. International Journal of Plant Science 164 (S5) S393–S407. doi: 10.1086/376881
[9]  Watson L, Dallwitz MJ (1993) The genera of Leguminosae-Caesalpinioideae and Swartzieae: descriptions, identification, and information retrieval. Version: 19th October 2005. Available: ftp://delta-intkey.com/caes/en/www/gymno?cla.htm. Accessed 13 July 2010.
[10]  Charlesworth D (1984) Androdioecy and the evolution of dioecy. Biol J Linn Soc Lond 22: 333–348. doi: 10.1111/j.1095-8312.1984.tb01683.x
[11]  Pannell JR (2002a) What is functional Androdioecy? Funct Ecol 16: 858–869. doi: 10.1046/j.1365-2435.2002.06893.x
[12]  Pannell JR (2002b) The evolution and maintenance of androdioecy. Annu Rev Ecol Evol Syst 33: 397–425. doi: 10.1146/annurev.ecolsys.33.010802.150419
[13]  Darwin CR (1877) The different forms of flowers on plants of the same species. London: John Murray.
[14]  Yampolsky C, Yampolsky H (1922) Distribution of sex forms in the phanerogamic flora. Bibliotheca Genetica 3: 4–62. doi: 10.1007/bf01676290
[15]  Weeks SC, Benvenuto C, Reed SK (2006) When males and hermaphrodites coexist: a review of androdioecy in animals. Integr Comp Biol 46 (4) 449–464. doi: 10.1093/icb/icj048
[16]  Heilbuth JC (2000) Lower species richness in dioecious clades. Am Nat 156 (3) 221–241. doi: 10.1086/303389
[17]  Delannay X (1978) La gynodioéci chez les angiospermes. Naturalistes Belges 99: 169–181.
[18]  Liston A, Rieseberg LH, Elias TS (1990) Functional androdioecy in the flowering plant Datisca glomerata. Nature 343: 641–642. doi: 10.1038/343641a0
[19]  Fritsch P, Rieseberg LH (1992) High outcrossing rates maintain male and hermaphrodite individuals in populations of the flowering plant Datisca glomerata. Nature 359: 633–636. doi: 10.1038/359633a0
[20]  Barrett SCH (1998) The evolution of mating strategies in flowering plants. Trends Plant Sci 3: 335–341. doi: 10.1016/s1360-1385(98)01299-0
[21]  Barrett SCH (2002) The evolution of plant sexual diversity. Nature Rev Genet 3: 274–284. doi: 10.1038/nrg776
[22]  Weeks SC (2012) The role of androdioecy and gynodioecy in mediating evolutionary transitions between dioecy and hermaphroditism in the animalia. Evolution 66 (12) 3670–3686. doi: 10.1111/j.1558-5646.2012.01714.x
[23]  Mayer SS, Charlesworth D (1991) Cryptic dioecy in flowering plants. Trends Ecol Evol 6: 320–325. doi: 10.1016/0169-5347(91)90039-z
[24]  Pannell JR (1997) Variation in sex ratios in and sex allocation in androdioecious Mercurialis annua.. J Ecol 85: 57–69. doi: 10.2307/2960627
[25]  Akimoto J, Fukuhara T, Kikuzawa K (1999) Sex ratios and genetic variation in a functionalyy androdioecious species Schizopepon bryoniaefolius (Cucurbitaceae). Am J Bot 86: 880–886. doi: 10.2307/2656708
[26]  Nishide M, Saito K, Kato H, Sugawara T (2009) Functional androdioecy in Morinda umbellata subsp. boninensis (Rubiaceae), endemic to the Bonin (Ogasawara) Islands. APJ 60 (2) 61–70.
[27]  Shivanna KR, Rangaswamy NS (1992) Pollen Biology; A laboratory Manual. New Delhi, India: Narosa Publishing House.
[28]  Brewbaker JL, Kwack BH (1963) The essential role of calcium ion in pollen germination and pollen tube growth. Am J Bot 50: 859–865. doi: 10.2307/2439772
[29]  Dafni A (1992) Pollination Ecology: A Practical Approach. New York: Oxford University Press.
[30]  Charlesworth B, Charlesworth D (1978) A model for the evolution of dioecy and gynodioecy. Am Nat 112: 975–997. doi: 10.1086/283342
[31]  Stephenson AG, Bertin RI (1983) Male competition, female choice, and sexual selection in plants. In: Real L, editor. Pollination biology. New York: Academic Press. pp. 109–149.
[32]  Lloyd DG, Webb CJ (1977) Secondary sex characteristics in plants. Bot Rev 43: 177–216. doi: 10.1007/bf02860717
[33]  Bawa KS (1983) Patterns of flowering in tropical plants. In: Jones CE, Little RJ, editors. Handbook of experimental pollination biology. New York: Van Nostrand Reinhold. pp. 394–410.
[34]  Dai C, Galloway LF (2012) Male flowers are better fathers than hermaphroditic flowers in andromonoecious Passiflora incarnata. New Phytol 193: 787–796. doi: 10.1111/j.1469-8137.2011.03966.x
[35]  Dorken ME, Friedman J, Barrett SCH (2002) The evolution and maintenance of monoecy and dioecy in Sagittaria latifolia (Alismataceae). Evolution 56: 31–41. doi: 10.1554/0014-3820(2002)056[0031:teamom]2.0.co;2
[36]  Paccini E, Nepi M (2007) Nectar production and presentation. In: Nicolson SW, Nepi M, Paccini E, editors. Nectaries and nectar. The Netherlands: Springer, Dordrecht. pp. 167–214.
[37]  Dixon KW (2009) Pollination and restoration. Science 325: 571–573. doi: 10.1126/science.1176295
[38]  Feinsinger P (1978) Ecological interactions between plants and hummingbirds in a successional tropical community. Ecol Monogr 48: 269–287. doi: 10.2307/2937231
[39]  Lloyd DG (1975) The maintenance of gynodioecy and androdioecy in angiosperms. Genetica 45 (3) 325–339. doi: 10.1007/bf01508307
[40]  Bawa KS (1980) Evolution of dioecy in flowering plants. Annu Rev Ecol Evol Syst 11: 15–39. doi: 10.1146/annurev.es.11.110180.000311
[41]  Philbrick CT, Rieseberg LH (1994) Pollen production in the androdioecious Datisca glomerata (Datsicaceae): Implications for breeding system equilibrium. Plant Species Biol 9: 43–46. doi: 10.1111/j.1442-1984.1994.tb00081.x
[42]  Turner BJ, Elder JF, Laughlin TF, Davis WP, Taylor DS (1992) Extreme clonal diversity and divergence in populations of a selfing hermaphroditic fish. Proc Natl Acad Sci USA 89: 10643–10647. doi: 10.1073/pnas.89.22.10643
[43]  Zierold T, Hanfling B, Gomez A (2007) Recent evolution of alternative reproductive modes in the ‘living fossil’ Triops cancriformis. BMC Evol Biol 7: 12. doi: 10.1186/1471-2148-7-161
[44]  Weeks SC, Sanderson TF, Zofkova M, Knott B (2008) Breeding systems in the clam shrimp family Limnadiidae (Branchiopoda, Spinicaudata). Invertebr Biol 127: 336–349. doi: 10.1111/j.1744-7410.2008.00130.x
[45]  Matsuyama S, Osawa N, Sakimoto M (2009) Generalist pollinators in the dioecious shrub Rhus trichocarpa Miq. (Anacardiaceae) and their role in reproductive success. Plant Species Biol 24: 215–224. doi: 10.1111/j.1442-1984.2009.00258.x
[46]  Opler PA, Baker HG, Frankie GW (1980) Plant reproductive characteristics during secondary succession in neotropical lowland forest ecosystems. Biotropica 12 (2) 40–46. doi: 10.2307/2388155
[47]  Muenchow GE (1987) Is dioecy associated with fleshy fruit? Am J Bot 74 (2) 287–293. doi: 10.2307/2444031
[48]  Bawa KS, Beach JH (1981) Evolution of sexual systems in flowering plants. Ann Mo Bot Gard 68: 254–274. doi: 10.2307/2398798
[49]  Chasnov JR (2010) The evolution from females to hermaphrodites results in a sexual conflict over mating in androdioecious nematode worms and clam shrimp. J Evol Biol 23: 539–556. doi: 10.1111/j.1420-9101.2009.01919.x
[50]  Carlson JE (2007) Male-biased nectar production in a protandrous herb matches predictions of sexual selection theory in plants. Am J Bot 94 (4) 674–682. doi: 10.3732/ajb.94.4.674
[51]  Wolf DE, Takebayashi N (2004) Pollen limitation and the evolution of androdioecy from dioecy. Am Nat 163 (1) 122–137. doi: 10.1086/380493
[52]  Astrop TI, Park LE, Brown B, Weeks SC (2012) Sexual discrimination at work: Spinicaudatan ‘Clam Shrimp’ (Crustacea: Branchiopoda) as a model organism for the study of sexual system evolution. Palaeontol Electronica 15 (2) 15.
[53]  Rieseberg LH, Hanson MA, Philbrick CT (1992) Androdioecy is derived from dioecy in Datiscaceae: evidence from restriction site mapping of PCR-amplified chloroplast DNA fragments. Syst Bot 17 (2) 324–336. doi: 10.2307/2419526
[54]  Wolf DE, Satkoski JA, White K, Rieseberg LH (2001) Sex determination in the androdioecious plant Datisca glomerata and its dioecious sister species D. cannabina.. Genetics 159: 1243–1257.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133