全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Quasi Solid-State Dye-Sensitized Solar Cell Incorporating Highly Conducting Polythiophene-Coated Carbon Nanotube Composites in Ionic Liquid

DOI: 10.1155/2011/357974

Full-Text   Cite this paper   Add to My Lib

Abstract:

Conducting polythiophene (PTh) composites with the host filler multiwalled carbon nanotube (MWNT) have been used, for the first time, in the dye-sensitized solar cells (DSCs). A quasi solid-state DSCs with the hybrid MWNT-PTh composites, an ionic liquid of 1-methyl-3-propyl imidazolium iodide (PMII), was placed between the dye-sensitized porous TiO2 and the Pt counter electrode without adding iodine and higher cell efficiency (4.76%) was achieved, as compared to that containing bare PMII (0.29%). The MWNT-PTh nanoparticles are exploited as the extended electron transfer materials and serve simultaneously as catalyst for the electrochemical reduction of I ? 3 . 1. Introduction Dye-sensitized solar cells (DSCs) have attracted significant attention as promising solar-to-electricity power conversion devices because of their higher energy conversion and potential for low-cost production [1–6]. In general, DSCs comprise an electrode consisting of nanocrystalline titanium dioxide (TiO2) films modified with a dye, a platinum counterelectrode, and an electrolyte solution in between the electrodes. Photoexcitation of the dye results in the injection of an electron into the conduction band of the oxide. The original state of the dye is subsequently restored by electron donation from a redox system, such as the iodide/triiodide (I?/I3??) couple. At the present, DSCs are mainly constructed by using liquid electrolyte as a charge transport material. The charge transport in these liquid electrolytes is typically achieved by using I?/I3?? redox reaction in electrolyte solution. Therefore, long-term durability of DSCs is limited by leakage and the volatilization of organic solvent-based electrolytes. Numerous investigations have been conferred to overcome this drawback, replacing the liquid electrolyte by organic and inorganic hole transport materials [7–9], polymer and gel electrolytes [10–14], and nanocomposite ionic liquid (IL) electrolytes [15–20] resulting in solid-state and quasi solid-state DSCs. Imperfect pour filling of the dye-coated nanocrystalline TiO2 film with organic and inorganic hole transport materials results in a poor device efficiency. Moreover, the ionic conductivity for the majority of the amorphous polymer electrolytes is too low (<10?5?S?cm?1), limiting the device efficiency. Although nanocomposite IL electrolyte can reduce leakages, it is not satisfactory, because of the high concentration of corrosive and volatile iodine present in the electrolyte. The introduction of I2 into the electrolytes could increase the conductivity of the electrolyte

References

[1]  B. O'Regan and M. Gr?tzel, “A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films,” Nature, vol. 353, no. 6346, pp. 737–740, 1991.
[2]  A. Hagfeld and M. Gr?tzel, “Light-induced redox reactions in nanocrystalline systems,” Chemical Reviews, vol. 95, no. 1, pp. 49–68, 1995.
[3]  M. Gr?tzel, “Conversion of sunlight to electric power by nanocrystalline dye-sensitized solar cells,” Journal of Photochemistry and Photobiology A, vol. 164, no. 1–3, pp. 3–14, 2004.
[4]  A. Hagfeldt and M. Gr?tzel, “Molecular photovoltaics,” Accounts of Chemical Research, vol. 33, no. 5, pp. 269–277, 2000.
[5]  M. K. Nazeeruddin, A. Kay, I. Rodicio et al., “Conversion of light to electricity by cis-X2bis(2,2′-bipyridyl-4,4′-dicarboxylate)ruthenium(II) charge-transfer sensitizers (X = Cl-, Br-, I-, CN-, and SCN-) on nanocrystalline TiO2 electrodes,” Journal of the American Chemical Society, vol. 115, no. 14, pp. 6382–6390, 1993.
[6]  K. Hara, H. Sugihara, Y. Tachibana et al., “Dye-sensitized nanocrystalline TiO2 solar cells based on ruthenium(II) phenanthroline complex photosensitizers,” Langmuir, vol. 17, no. 19, pp. 5992–5999, 2001.
[7]  J. Bandara and H. Weerasinghe, “Solid-state dye-sensitized solar cell with p-type NiO as a hole collector,” Solar Energy Materials and Solar Cells, vol. 85, no. 3, pp. 385–390, 2005.
[8]  G. K. R. Senadeera, T. Kitamura, Y. Wada, and S. Yanagida, “Enhanced photoresponses of polypyrrole on surface modified TiO2 with self-assembled monolayers,” Journal of Photochemistry and Photobiology A, vol. 184, no. 1-2, pp. 234–239, 2006.
[9]  J. E. Kroeze, N. Hirata, L. Schmidt-Mende et al., “Parameters influencing charge separation in solid-state dye-sensitized solar cells using novel hole conductors,” Advanced Functional Materials, vol. 16, no. 14, pp. 1832–1838, 2006.
[10]  T. Kato, A. Okazaki, and S. Hayase, “Latent gel electrolyte precursors for quasi-solid dye sensitized solar cells the comparison of nano-particle cross-linkers with polymer cross-linkers,” Journal of Photochemistry and Photobiology A, vol. 179, no. 1-2, pp. 42–48, 2006.
[11]  J. N. Freitas, C. Longo, A. F. Nogueira, and M.-A. de Paoli, “Solar module using dye-sensitized solar cells with a polymer electrolyte,” Solar Energy Materials and Solar Cells, vol. 92, no. 9, pp. 1110–1114, 2008.
[12]  J. Wu, Z. Lan, J. Lin et al., “A novel thermosetting gel electrolyte for stable quasi-solid-state dye-sensitized solar cells,” Advanced Materials, vol. 19, no. 22, pp. 4006–4011, 2007.
[13]  J. N. Freitas, A. F. Nogueira, and M.-A. de Paoli, “New insights into dye-sensitized solar cells with polymer electrolytes,” Journal of Materials Chemistry, vol. 19, no. 30, pp. 5279–5294, 2009.
[14]  B. I. Ito, J. N. De Freitas, M. A. De Paoli, and A. F. Nogueira, “Application of a composite polymer electrolyte based on montmorillonite in dye-sensitized solar cells,” Journal of the Brazilian Chemical Society, vol. 19, no. 4, pp. 688–696, 2008.
[15]  P. Wang, S. M. Zakeeruddin, P. Comte, I. Exnar, and M. Gr?tzel, “Gelation of ionic liquid-based electrolytes with silica nanoparticles for quasi-solid-state dye-sensitized solar cells,” Journal of the American Chemical Society, vol. 125, no. 5, pp. 1166–1167, 2003.
[16]  H. Usui, H. Matsui, N. Tanabe, and S. Yanagida, “Improved dye-sensitized solar cells using ionic nanocomposite gel electrolytes,” Journal of Photochemistry and Photobiology A, vol. 164, no. 1–3, pp. 97–101, 2004.
[17]  T. Katakabe, R. Kawano, and M. Watanabe, “Acceleration of redox diffusion and charge-transfer rates in an ionic liquid with nanoparticle addition,” Electrochemical and Solid-State Letters, vol. 10, no. 6, pp. F23–F25, 2007.
[18]  K. M. Lee, P. Y. Chen, C. P. Lee, and K. C. Ho, “Binary room-temperature ionic liquids based electrolytes solidified with SiO2 nanoparticles for dye-sensitized solar cells,” Journal of Power Sources, vol. 190, no. 2, pp. 573–577, 2009.
[19]  C. P. Lee, K. M. Lee, P. Y. Chen, and K. C. Ho, “On the addition of conducting ceramic nanoparticles in solvent-free ionic liquid electrolyte for dye-sensitized solar cells,” Solar Energy Materials and Solar Cells, vol. 93, no. 8, pp. 1411–1416, 2009.
[20]  Z. Chen, H. Yang, X. Li, F. Li, T. Yi, and C. Huang, “Thermostable succinonitrile-based gel electrolyte for efficient, long-life dye-sensitized solar cells,” Journal of Materials Chemistry, vol. 17, no. 16, pp. 1602–1607, 2007.
[21]  W. U. Huynh, J. J. Dittmer, and A. P. Alivisatos, “Hybrid nanorod-polymer solar cells,” Science, vol. 295, no. 5564, pp. 2425–2427, 2002.
[22]  M. R. Karim, C. J. Lee, and M. S. Lee, “Synthesis and characterization of conducting polythiophene/carbon nanotubes composites,” Journal of Polymer Science A, vol. 44, no. 18, pp. 5283–5290, 2006.
[23]  M. R. Karim, C. J. Lee, Y.-T. Park, and M. S. Lee, “SWNTs coated by conducting polyaniline: synthesis and modified properties,” Synthetic Metals, vol. 151, no. 2, pp. 131–135, 2005.
[24]  M. Fu, Y. Zhu, R. Tan, and G. Shi, “Aligned polythiophene micro- and nanotubules,” Advanced Materials, vol. 13, no. 24, pp. 1874–1877, 2001.
[25]  C.-P. Lee, P. Y. Chen, R. Vittal, and K.-C. Ho, “Iodine-free high efficient quasi solid-state dye-sensitized solar cell containing ionic liquid and polyaniline-loaded carbon black,” Journal of Materials Chemistry, vol. 20, no. 12, pp. 2356–2361, 2010.
[26]  C.-P. Lee, L.-Y. Lin, P.-Y. Chen, R. Vittal, and K.-C. Ho, “All-solid-state dye-sensitized solar cells incorporating SWCNTs and crystal growth inhibitor,” Journal of Materials Chemistry, vol. 20, no. 18, pp. 3619–3625, 2010.
[27]  H. Wang, H. Li, B. Xue, Z. Wang, Q. Meng, and L. Chen, “Solid-state composite electrolyte Lil/3-hydroxypropionitrile/SiO2 for dye-sensitized solar cells,” Journal of the American Chemical Society, vol. 127, no. 17, pp. 6394–6401, 2005.
[28]  N. Ikeda, K. Teshima, and T. Miyasaka, “Conductive polymer-carbon-imidazolium composite: a simple means for constructing solid-state dye-sensitized solar cells,” Chemical Communications, no. 16, pp. 1733–1735, 2006.
[29]  M. R. Karim, J. H. Yeum, M. S. Lee, and K. T. Lim, “Synthesis of conducting polythiophene composites with multi-walled carbon nanotube by the γ-radiolysis polymerization method,” Materials Chemistry and Physics, vol. 112, no. 3, pp. 779–782, 2008.
[30]  M. K. Nazeeruddin, P. Péchy, T. Renouard et al., “Engineering of efficient panchromatic sensitizers for nanocrystalline TiO2-based solar cells,” Journal of the American Chemical Society, vol. 123, no. 8, pp. 1613–1624, 2001.
[31]  M. Ikeda, N. Koide, L. Han, A. Sasahara, and H. Onishi, “Scanning tunneling microscopy study of black dye and deoxycholic acid adsorbed on a rutile TiO2(110),” Langmuir, vol. 24, no. 15, pp. 8056–8060, 2008.
[32]  Z. S. Wang, Y. Cui, Y. Dan-oh, C. Kasada, A. Shinpo, and K. Hara, “Thiophene-functionalized coumarin dye for efficient dye-sensitized solar cells: electron lifetime improved by coadsorption of deoxycholic acid,” Journal of Physical Chemistry C, vol. 111, no. 19, pp. 7224–7230, 2007.
[33]  N. Papageorgiou, Y. Athanassov, M. Armand et al., “The performance and stability of ambient temperature molten salts for solar cell applications,” Journal of the Electrochemical Society, vol. 143, no. 10, pp. 3099–3108, 1996.
[34]  P. Wang, S. M. Zakeeruddin, J. E. Moser, R. H. Baker, and M. Gr?tzel, “A solvent-free, SeCN-/ based ionic liquid electrolyte for high-efficiency dye-sensitized nanocrystalline solar cells,” Journal of the American Chemical Society, vol. 126, no. 23, pp. 7164–7165, 2004.
[35]  R. Kawano, H. Matsui, C. Matsuyama et al., “High performance dye-sensitized solar cells using ionic liquids as their electrolytes,” Journal of Photochemistry and Photobiology A, vol. 164, no. 1–3, pp. 87–92, 2004.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133