全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2014 

Acute Neuromuscular Adaptation at the Spinal Level Following Middle Cerebral Artery Occlusion-Reperfusion in the Rat

DOI: 10.1371/journal.pone.0089953

Full-Text   Cite this paper   Add to My Lib

Abstract:

The purpose of the study was to highlight the acute motor reflex adaptation and to deepen functional deficits following a middle cerebral artery occlusion-reperfusion (MCAO-r). Thirty-six Sprague-Dawley rats were included in this study. The middle cerebral artery occlusion (MCAO; 120 min) was performed on 16 rats studied at 1 and 7 days, respectively (MCAO-D1 and MCAO-D7, n = 8 for each group). The other animals were divided into 3 groups: SHAM-D1 (n = 6), SHAM-D7 (n = 6) and Control (n = 8). Rats performed 4 behavioral tests (the elevated body swing test, the beam balance test, the ladder-climbing test and the forelimb grip force) before the surgery and daily after MCAO-r. H-reflex on triceps brachii was measured before and after isometric exercise. Infarction size and cerebral edema were respectively assessed by histological (Cresyl violet) and MRI measurements at the same time points than H-reflex recordings. Animals with cerebral ischemia showed persistent functional deficits during the first week post-MCAO-r. H-reflex was not decreased in response to isometric exercise one day after the cerebral ischemia contrary to the other groups. The motor reflex regulation was recovered 7 days post-MCAO-r. This result reflects an acute sensorimotor adaptation at the spinal level after MCAO-r.

References

[1]  Braeuninger S, Kleinschnitz C (2009) Rodent models of focal cerebral ischemia: procedural pitfalls and translational problems. Exp Transl Stroke Med 1: 8. doi: 10.1186/2040-7378-1-8
[2]  Broussalis E, Trinka E, Killer M, Harrer A, McCoy M, et al. (2012) Current therapies in ischemic stroke. Part B. Future candidates in stroke therapy and experimental studies. Drug Discov Today 17: 671–684. doi: 10.1016/j.drudis.2012.02.011
[3]  Ward NS (2005) Mechanisms underlying recovery of motor function after stroke. Postgrad Med J 81: 510–514. doi: 10.1136/pgmj.2004.030809
[4]  Carmichael ST (2005) Rodent models of focal stroke: size, mechanism, and purpose. NeuroRx 2: 396–409. doi: 10.1602/neurorx.2.3.396
[5]  DeVries AC, Nelson RJ, Traystman RJ, Hurn PD (2001) Cognitive and behavioral assessment in experimental stroke research: will it prove useful? Neurosci Biobehav Rev 25: 325–342. doi: 10.1016/s0149-7634(01)00017-3
[6]  Gupta YK, Briyal S (2004) Animal models of cerebral ischemia for evaluation of drugs. Indian J Physiol Pharmacol 48: 379–394.
[7]  Gutknecht J, Larrey D, Ychou M, Fedkovic Y, Janbon C (1991) [Severe ischemic hepatitis after taking cibenzoline]. Ann Gastroenterol Hepatol (Paris) 27: 269–270.
[8]  Kawamata T, Alexis NE, Dietrich WD, Finklestein SP (1996) Intracisternal basic fibroblast growth factor (bFGF) enhances behavioral recovery following focal cerebral infarction in the rat. J Cereb Blood Flow Metab 16: 542–547. doi: 10.1097/00004647-199607000-00003
[9]  Yamaguchi T, Suzuki M, Yamamoto M (1995) YM796, a novel muscarinic agonist, improves the impairment of learning behavior in a rat model of chronic focal cerebral ischemia. Brain Res 669: 107–114. doi: 10.1016/0006-8993(94)01268-m
[10]  Aronowski J, Samways E, Strong R, Rhoades HM, Grotta JC (1996) An alternative method for the quantitation of neuronal damage after experimental middle cerebral artery occlusion in rats: analysis of behavioral deficit. J Cereb Blood Flow Metab 16: 705–713. doi: 10.1097/00004647-199607000-00022
[11]  Kleim JA, Boychuk JA, Adkins DL (2007) Rat models of upper extremity impairment in stroke. ILAR J 48: 374–384. doi: 10.1093/ilar.48.4.374
[12]  Roof RL, Schielke GP, Ren X, Hall ED (2001) A comparison of long-term functional outcome after 2 middle cerebral artery occlusion models in rats. Stroke 32: 2648–2657. doi: 10.1161/hs1101.097397
[13]  Akhtar M, Pillai K, Vohora D (2008) Effect of thioperamide on oxidative stress markers in middle cerebral artery occlusion model of focal cerebral ischemia in rats. Hum Exp Toxicol 27: 761–767. doi: 10.1177/0960327108094608
[14]  Erdo F, Berzsenyi P, Nemet L, Andrasi F (2006) Talampanel improves the functional deficit after transient focal cerebral ischemia in rats. A 30-day follow up study. Brain Res Bull 68: 269–276. doi: 10.1016/j.brainresbull.2005.08.018
[15]  Krakauer JW (2005) Arm function after stroke: from physiology to recovery. Semin Neurol 25: 384–395. doi: 10.1055/s-2005-923533
[16]  Forrester LW, Hanley DF, Macko RF (2006) Effects of treadmill exercise on transcranial magnetic stimulation-induced excitability to quadriceps after stroke. Arch Phys Med Rehabil 87: 229–234. doi: 10.1016/j.apmr.2005.10.016
[17]  Hwang IS, Lin CF, Tung LC, Wang CH (2004) Responsiveness of the H reflex to loading and posture in patients following stroke. J Electromyogr Kinesiol 14: 653–659. doi: 10.1016/j.jelekin.2004.01.002
[18]  Phadke CP, Robertson CT, Condliffe EG, Patten C (2012) Upper-extremity H-reflex measurement post-stroke: reliability and inter-limb differences. Clin Neurophysiol 123: 1606–1615. doi: 10.1016/j.clinph.2011.12.012
[19]  Stowe AM, Hughes-Zahner L, Barnes VK, Herbelin LL, Schindler-Ivens SM, et al. (2013) A pilot study to measure upper extremity H-reflexes following neuromuscular electrical stimulation therapy after stroke. Neurosci Lett 535: 1–6. doi: 10.1016/j.neulet.2012.11.063
[20]  Zehr EP (2006) Training-induced adaptive plasticity in human somatosensory reflex pathways. J Appl Physiol (1985) 101: 1783–1794. doi: 10.1152/japplphysiol.00540.2006
[21]  Misiaszek JE, Pearson KG (1997) Stretch of quadriceps inhibits the soleus H reflex during locomotion in decerebrate cats. J Neurophysiol 78: 2975–2984.
[22]  Knikou M (2008) The H-reflex as a probe: pathways and pitfalls. J Neurosci Methods 171: 1–12. doi: 10.1016/j.jneumeth.2008.02.012
[23]  Adreani CM, Hill JM, Kaufman MP (1997) Responses of group III and IV muscle afferents to dynamic exercise. J Appl Physiol (1985) 82: 1811–1817.
[24]  Liu F, Schafer DP, McCullough LD (2009) TTC, fluoro-Jade B and NeuN staining confirm evolving phases of infarction induced by middle cerebral artery occlusion. J Neurosci Methods 179: 1–8. doi: 10.1016/j.jneumeth.2008.12.028
[25]  Lin TN, He YY, Wu G, Khan M, Hsu CY (1993) Effect of brain edema on infarct volume in a focal cerebral ischemia model in rats. Stroke 24: 117–121. doi: 10.1161/01.str.24.1.117
[26]  Yang YR, Wang RY, Wang PS (2003) Early and late treadmill training after focal brain ischemia in rats. Neurosci Lett 339: 91–94. doi: 10.1016/s0304-3940(03)00010-7
[27]  Virley D, Beech JS, Smart SC, Williams SC, Hodges H, et al. (2000) A temporal MRI assessment of neuropathology after transient middle cerebral artery occlusion in the rat: correlations with behavior. J Cereb Blood Flow Metab 20: 563–582. doi: 10.1097/00004647-200003000-00015
[28]  Matsuda F, Sakakima H, Yoshida Y (2011) The effects of early exercise on brain damage and recovery after focal cerebral infarction in rats. Acta Physiol (Oxf) 201: 275–287. doi: 10.1111/j.1748-1716.2010.02174.x
[29]  Carmichael ST (2003) Plasticity of cortical projections after stroke. Neuroscientist 9: 64–75. doi: 10.1177/1073858402239592
[30]  Stroemer RP, Kent TA, Hulsebosch CE (1995) Neocortical neural sprouting, synaptogenesis, and behavioral recovery after neocortical infarction in rats. Stroke 26: 2135–2144. doi: 10.1161/01.str.26.11.2135
[31]  Lee SU, Kim DY, Park SH, Choi DH, Park HW, et al. (2009) Mild to moderate early exercise promotes recovery from cerebral ischemia in rats. Can J Neurol Sci 36: 443–449.
[32]  Yang YR, Chang HC, Wang PS, Wang RY (2012) Motor performance improved by exercises in cerebral ischemic rats. J Mot Behav 44: 97–103. doi: 10.1080/00222895.2012.654524
[33]  Wang-Fischer Y (2008) Manual of Stroke Models in Rats. Boca Raton: CRC Press. 352 p.
[34]  Uluc K, Miranpuri A, Kujoth GC, Akture E, Baskaya MK (2011) Focal cerebral ischemia model by endovascular suture occlusion of the middle cerebral artery in the rat. J Vis Exp.
[35]  Longa EZ, Weinstein PR, Carlson S, Cummins R (1989) Reversible middle cerebral artery occlusion without craniectomy in rats. Stroke 20: 84–91. doi: 10.1161/01.str.20.1.84
[36]  Borlongan CV, Cahill DW, Sanberg PR (1995) Locomotor and passive avoidance deficits following occlusion of the middle cerebral artery. Physiol Behav 58: 909–917. doi: 10.1016/0031-9384(95)00103-p
[37]  Zausinger S, Hungerhuber E, Baethmann A, Reulen H, Schmid-Elsaesser R (2000) Neurological impairment in rats after transient middle cerebral artery occlusion: a comparative study under various treatment paradigms. Brain Res 863: 94–105. doi: 10.1016/s0006-8993(00)02100-4
[38]  Metz GA, Whishaw IQ (2009) The ladder rung walking task: a scoring system and its practical application. J Vis Exp.
[39]  Crone C, Nielsen J (1989) Methodological implications of the post activation depression of the soleus H-reflex in man. Exp Brain Res 78: 28–32. doi: 10.1007/bf00230683
[40]  Zehr EP (2002) Considerations for use of the Hoffmann reflex in exercise studies. Eur J Appl Physiol 86: 455–468. doi: 10.1007/s00421-002-0577-5
[41]  Felix MS, Popa N, Djelloul M, Boucraut J, Gauthier P, et al. (2012) Alteration of forebrain neurogenesis after cervical spinal cord injury in the adult rat. Front Neurosci 6: 45. doi: 10.3389/fnins.2012.00045
[42]  Tureyen K, Vemuganti R, Sailor KA, Dempsey RJ (2004) Infarct volume quantification in mouse focal cerebral ischemia: a comparison of triphenyltetrazolium chloride and cresyl violet staining techniques. J Neurosci Methods 139: 203–207. doi: 10.1016/j.jneumeth.2004.04.029
[43]  Kober F, Duhamel G, Cozzone PJ (2008) Experimental comparison of four FAIR arterial spin labeling techniques for quantification of mouse cerebral blood flow at 4.7 T. NMR Biomed 21: 781–792. doi: 10.1002/nbm.1253
[44]  Desborough JP (2000) The stress response to trauma and surgery. Br J Anaesth 85: 109–117. doi: 10.1093/bja/85.1.109
[45]  Yang YR, Wang RY, Wang PS, Yu SM (2003) Treadmill training effects on neurological outcome after middle cerebral artery occlusion in rats. Can J Neurol Sci 30: 252–258.
[46]  Cliffer KD, Tonra JR, Carson SR, Radley HE, Cavnor C, et al. (1998) Consistent repeated M- and H-Wave recording in the hind limb of rats. Muscle Nerve 21: 1405–1413. doi: 10.1002/(sici)1097-4598(199811)21:11<1405::aid-mus7>3.0.co;2-d
[47]  Gozariu M, Roth V, Keime F, Le Bars D, Willer JC (1998) An electrophysiological investigation into the monosynaptic H-reflex in the rat. Brain Res 782: 343–347. doi: 10.1016/s0006-8993(97)01402-9
[48]  Gandevia SC (2001) Spinal and supraspinal factors in human muscle fatigue. Physiol Rev 81: 1725–1789.
[49]  Dobkin BH (2004) Strategies for stroke rehabilitation. Lancet Neurol 3: 528–536. doi: 10.1016/s1474-4422(04)00851-8
[50]  Chang HC, Yang YR, Wang PS, Kuo CH, Wang RY (2010) Effects of insulin-like growth factor 1 on muscle atrophy and motor function in rats with brain ischemia. Chin J Physiol 53: 337–348. doi: 10.4077/cjp.2010.amk080
[51]  Duchateau J, Balestra C, Carpentier A, Hainaut K (2002) Reflex regulation during sustained and intermittent submaximal contractions in humans. J Physiol 541: 959–967. doi: 10.1113/jphysiol.2002.016790
[52]  Garland SJ (1991) Role of small diameter afferents in reflex inhibition during human muscle fatigue. J Physiol 435: 547–558.
[53]  Borlongan CV, Tajima Y, Trojanowski JQ, Lee VM, Sanberg PR (1998) Transplantation of cryopreserved human embryonal carcinoma-derived neurons (NT2N cells) promotes functional recovery in ischemic rats. Exp Neurol 149: 310–321. doi: 10.1006/exnr.1997.6730
[54]  Chen JR, Cheng GY, Sheu CC, Tseng GF, Wang TJ, et al. (2008) Transplanted bone marrow stromal cells migrate, differentiate and improve motor function in rats with experimentally induced cerebral stroke. J Anat 213: 249–258. doi: 10.1111/j.1469-7580.2008.00948.x
[55]  Deshmukh A, Patel J, Prajapati A, Vaghela M, Goswami H (2011) Cerebroprotective effects of extract of Beta vulgaris (C.) in middle cerebral artery occlusion (MCAO)-induced cerebral ischemia. Phytopharmacology 1: 138–147.
[56]  Ishrat T, Sayeed I, Atif F, Stein DG (2009) Effects of progesterone administration on infarct volume and functional deficits following permanent focal cerebral ischemia in rats. Brain Res 1257: 94–101. doi: 10.1016/j.brainres.2008.12.048
[57]  Gharbawie OA, Whishaw IQ (2006) Parallel stages of learning and recovery of skilled reaching after motor cortex stroke: “oppositions” organize normal and compensatory movements. Behav Brain Res 175: 249–262. doi: 10.1016/j.bbr.2006.08.039

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133