[1] | Berton O, Nestler EJ (2006) New approaches to antidepressant drug discovery: beyond monoamines. Nat Rev Neurosci 7: 137–151. doi: 10.1038/nrn1846
|
[2] | Kessler RC, Berglund P, Demler O, Jin R, Koretz D, et al. (2003) The epidemiology of major depressive disorder: results from the National Comorbidity Survey Replication (NCS-R). JAMA 289: 3095–3105. doi: 10.1001/jama.289.23.3095
|
[3] | Nestler EJ, Gould E, Manji H, Buncan M, Duman RS, et al. (2002) Preclinical models: status of basic research in depression. Biol Psychiatry 52: 503–528. doi: 10.1016/s0006-3223(02)01405-1
|
[4] | Frazer A, Benmansour S (2002) Delayed pharmacological effects of antidepressants. Mol Psychiatry 7 Suppl 1S23–28. doi: 10.1038/sj.mp.4001015
|
[5] | Lauterbach EC (2012) An extension of hypotheses regarding rapid-acting, treatment-refractory, and conventional antidepressant activity of dextromethorphan and dextrorphan. Med Hypotheses 78: 693–702. doi: 10.1016/j.mehy.2012.02.012
|
[6] | Zarate CA Jr, Singh JB, Carlson PJ, Brutsche NE, Ameli R, et al. (2006) A randomized trial of an N-methyl-D-aspartate antagonist in treatment-resistant major depression. Arch Gen Psychiatry 63: 856–864. doi: 10.1001/archpsyc.63.8.856
|
[7] | Berman RM, Cappiello A, Anand A, Oren DA, Heninger GR, et al. (2000) Antidepressant effects of ketamine in depressed patients. Biol Psychiatry 47: 351–354. doi: 10.1016/s0006-3223(99)00230-9
|
[8] | Price RB, Nock MK, Charney DS, Mathew SJ (2009) Effects of intravenous ketamine on explicit and implicit measures of suicidality in treatment-resistant depression. Biol Psychiatry 66: 522–526. doi: 10.1016/j.biopsych.2009.04.029
|
[9] | Werling LL, Keller A, Frank JG, Nuwayhid SJ (2007) A comparison of the binding profiles of dextromethorphan, memantine, fluoxetine and amitriptyline: treatment of involuntary emotional expression disorder. Exp Neurol 207: 248–257. doi: 10.1016/j.expneurol.2007.06.013
|
[10] | Fishback JA, Robson MJ, Xu YT, Matsumoto RR (2010) Sigma receptors: potential targets for a new class of antidepressant drug. Pharmacol Ther 127: 271–282. doi: 10.1016/j.pharmthera.2010.04.003
|
[11] | Schmid B, Bircher J, Preisig R, Kupfer A (1985) Polymorphic dextromethorphan metabolism: co-segregation of oxidative O-demethylation with debrisoquin hydroxylation. Clin Pharmacol Ther 38: 618–624.
|
[12] | Pope LE, Khalil MH, Berg JE, Stiles M, Yakatan GJ, et al. (2004) Pharmacokinetics of dextromethorphan after single or multiple dosing in combination with quinidine in extensive and poor metabolizers. J Clin Pharmacol 44: 1132–1142. doi: 10.1177/0091270004269521
|
[13] | Werling LL, Lauterbach EC, Calef U (2007) Dextromethorphan as a potential neuroprotective agent with unique mechanisms of action. Neurologist 13: 272–293. doi: 10.1097/nrl.0b013e3180f60bd8
|
[14] | Hayashi T, Su TP (2007) Sigma-1 receptor chaperones at the ER-mitochondrion interface regulate Ca(2+) signaling and cell survival. Cell 131: 596–610. doi: 10.1016/j.cell.2007.08.036
|
[15] | Su TP, Hayashi T, Maurice T, Buch S, Ruoho AE (2010) The sigma-1 receptor chaperone as an inter-organelle signaling modulator. Trends Pharmacol Sci 31: 557–566. doi: 10.1016/j.tips.2010.08.007
|
[16] | Sabino V, Cottone P, Parylak SL, Steardo L, Zorrilla EP (2009) Sigma-1 receptor knockout mice display a depressive-like phenotype. Behav Brain Res 198: 472–476. doi: 10.1016/j.bbr.2008.11.036
|
[17] | Matsuno K, Kobayashi T, Tanaka MK, Mita S (1996) Sigma 1 receptor subtype is involved in the relief of behavioral despair in the mouse forced swimming test. Eur J Pharmacol 312: 267–271. doi: 10.1016/0014-2999(96)00497-9
|
[18] | Ukai M, Maeda H, Nanya Y, Kameyama T, Matsuno K (1998) Beneficial effects of acute and repeated administrations of sigma receptor agonists on behavioral despair in mice exposed to tail suspension. Pharmacol Biochem Behav 61: 247–252. doi: 10.1016/s0091-3057(98)00093-8
|
[19] | Skuza G (2003) Potential antidepressant activity of sigma ligands. Pol J Pharmacol 55: 923–934.
|
[20] | Skuza G, Rogoz Z (2002) A potential antidepressant activity of SA4503, a selective sigma 1 receptor agonist. Behav Pharmacol 13: 537–543. doi: 10.1097/00008877-200211000-00003
|
[21] | Wang J, Mack AL, Coop A, Matsumoto RR (2007) Novel sigma (sigma) receptor agonists produce antidepressant-like effects in mice. Eur Neuropsychopharmacol 17: 708–716. doi: 10.1016/j.euroneuro.2007.02.007
|
[22] | Volz HP, Stoll KD (2004) Clinical trials with sigma ligands. Pharmacopsychiatry 37 Suppl 3S214–220. doi: 10.1055/s-2004-832680
|
[23] | Hayashi T, Su TP (2008) An update on the development of drugs for neuropsychiatric disorders: focusing on the sigma 1 receptor ligand. Expert Opin Ther Targets 12: 45–58. doi: 10.1517/14728222.12.1.45
|
[24] | Bermack JE, Debonnel G (2001) Modulation of serotonergic neurotransmission by short- and long-term treatments with sigma ligands. Br J Pharmacol 134: 691–699. doi: 10.1038/sj.bjp.0704294
|
[25] | Lucas G, Rymar VV, Sadikot AF, Debonnel G (2008) Further evidence for an antidepressant potential of the selective sigma1 agonist SA 4503: electrophysiological, morphological and behavioural studies. Int J Neuropsychopharmacol 11: 485–495. doi: 10.1017/s1461145708008547
|
[26] | Robson MJ, Elliott M, Seminerio MJ, Matsumoto RR (2012) Evaluation of sigma (sigma) receptors in the antidepressant-like effects of ketamine in vitro and in vivo. Eur Neuropsychopharmacol 22: 308–317. doi: 10.1016/j.euroneuro.2011.08.002
|
[27] | Fishback JA, Rosen A, Bhat R, McCurdy CR, Matsumoto RR (2012) A 96-well filtration method for radioligand binding analysis of sigma receptor ligands. J Pharm Biomed Anal 71: 157–161. doi: 10.1016/j.jpba.2012.07.023
|
[28] | Chou YC, Liao JF, Chang WY, Lin MF, Chen CF (1999) Binding of dimemorfan to sigma-1 receptor and its anticonvulsant and locomotor effects in mice, compared with dextromethorphan and dextrorphan. Brain Res 821: 516–519. doi: 10.1016/s0006-8993(99)01125-7
|
[29] | Cryan JF, Holmes A (2005) The ascent of mouse: advances in modelling human depression and anxiety. Nat Rev Drug Discov 4: 775–790. doi: 10.1038/nrd1825
|
[30] | McArthur R, Borsini F (2006) Animal models of depression in drug discovery: a historical perspective. Pharmacol Biochem Behav 84: 436–452. doi: 10.1016/j.pbb.2006.06.005
|
[31] | Nguyen EC, McCracken KA, Liu Y, Pouw B, Matsumoto RR (2005) Involvement of sigma (sigma) receptors in the acute actions of methamphetamine: receptor binding and behavioral studies. Neuropharmacology 49: 638–645. doi: 10.1016/j.neuropharm.2005.04.016
|
[32] | Urani A, Roman FJ, Phan VL, Su TP, Maurice T (2001) The antidepressant-like effect induced by sigma(1)-receptor agonists and neuroactive steroids in mice submitted to the forced swimming test. J Pharmacol Exp Ther 298: 1269–1279.
|
[33] | Bermack J, Lavoie N, Dryver E, Debonnel G (2002) Effects of sigma ligands on NMDA receptor function in the bulbectomy model of depression: a behavioural study in the rat. Int J Neuropsychopharmacol 5: 53–62. doi: 10.1017/s1461145701002760
|
[34] | Nam Y, Shin EJ, Yang BK, Bach JH, Jeong JH, et al. (2012) Dextromethorphan-induced psychotoxic behaviors cause sexual dysfunction in male mice via stimulation of sigma-1 receptors. Neurochem Int 61: 913–922. doi: 10.1016/j.neuint.2012.01.025
|
[35] | Wu Z, Bowen WD (2008) Role of sigma-1 receptor C-terminal segment in inositol 1,4,5-trisphosphate receptor activation: constitutive enhancement of calcium signaling in MCF-7 tumor cells. J Biol Chem 283: 28198–28215. doi: 10.1074/jbc.m802099200
|
[36] | Yamamoto H, Miura R, Yamamoto T, Shinohara K, Watanabe M, et al. (1999) Amino acid residues in the transmembrane domain of the type 1 sigma receptor critical for ligand binding. FEBS Lett 445: 19–22. doi: 10.1016/s0014-5793(99)00084-8
|
[37] | Cobos EJ, Baeyens JM, Del Pozo E (2005) Phenytoin differentially modulates the affinity of agonist and antagonist ligands for sigma 1 receptors of guinea pig brain. Synapse 55: 192–195. doi: 10.1002/syn.20103
|
[38] | Codd EE, Shank RP, Schupsky JJ, Raffa RB (1995) Serotonin and norepinephrine uptake inhibiting activity of centrally acting analgesics: structural determinants and role in antinociception. J Pharmacol Exp Ther 274: 1263–1270.
|
[39] | Cryan JF, Markou A, Lucki I (2002) Assessing antidepressant activity in rodents: recent developments and future needs. Trends Pharmacol Sci 23: 238–245. doi: 10.1016/s0165-6147(02)02017-5
|
[40] | Owens MJ, Morgan WN, Plott SJ, Nemeroff CB (1997) Neurotransmitter receptor and transporter binding profile of antidepressants and their metabolites. J Pharmacol Exp Ther 283: 1305–1322.
|
[41] | Bymaster FP, Katner JS, Nelson DL, Hemrick-Luecke SK, Threlkeld PG, et al. (2002) Atomoxetine increases extracellular levels of norepinephrine and dopamine in prefrontal cortex of rat: a potential mechanism for efficacy in attention deficit/hyperactivity disorder. Neuropsychopharmacology 27: 699–711. doi: 10.1016/s0893-133x(02)00346-9
|
[42] | Runyon SP, Savage JE, Taroua M, Roth BL, Glennon RA, et al. (2001) Influence of chain length and N-alkylation on the selective serotonin receptor ligand 9-(aminomethyl)-9,10-dihydroanthracene. Bioorg Med Chem Lett 11: 655–658. doi: 10.1016/s0960-894x(01)00023-3
|
[43] | Tatsumi M, Groshan K, Blakely RD, Richelson E (1997) Pharmacological profile of antidepressants and related compounds at human monoamine transporters. Eur J Pharmacol 340: 249–258. doi: 10.1016/s0014-2999(97)01393-9
|
[44] | Narita N, Hashimoto K, Tomitaka S, Minabe Y (1996) Interactions of selective serotonin reuptake inhibitors with subtypes of sigma receptors in rat brain. Eur J Pharmacol 307: 117–119. doi: 10.1016/0014-2999(96)00254-3
|
[45] | Andersen PH (1989) The dopamine inhibitor GBR 12909: selectivity and molecular mechanism of action. Eur J Pharmacol 166: 493–504. doi: 10.1016/0014-2999(89)90363-4
|
[46] | Cusack B, Nelson A, Richelson E (1994) Binding of antidepressants to human brain receptors: focus on newer generation compounds. Psychopharmacology (Berl) 114: 559–565. doi: 10.1007/bf02244985
|
[47] | Stanton T, Bolden-Watson C, Cusack B, Richelson E (1993) Antagonism of the five cloned human muscarinic cholinergic receptors expressed in CHO-K1 cells by antidepressants and antihistaminics. Biochem Pharmacol 45: 2352–2354. doi: 10.1016/0006-2952(93)90211-e
|
[48] | Wong DT, Threlkeld PG, Best KL, Bymaster FP (1982) A new inhibitor of norepinephrine uptake devoid of affinity for receptors in rat brain. J Pharmacol Exp Ther 222: 61–65.
|
[49] | Tran VT, Chang RS, Snyder SH (1978) Histamine H1 receptors identified in mammalian brain membranes with [3H]mepyramine. Proc Natl Acad Sci U S A 75: 6290–6294. doi: 10.1073/pnas.75.12.6290
|