全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2014 

Involvement of Sigma-1 Receptors in the Antidepressant-like Effects of Dextromethorphan

DOI: 10.1371/journal.pone.0089985

Full-Text   Cite this paper   Add to My Lib

Abstract:

Dextromethorphan is an antitussive with a high margin of safety that has been hypothesized to display rapid-acting antidepressant activity based on pharmacodynamic similarities to the N-methyl-D-aspartate (NMDA) receptor antagonist ketamine. In addition to binding to NMDA receptors, dextromethorphan binds to sigma-1 (σ1) receptors, which are believed to be protein targets for a potential new class of antidepressant medications. The purpose of this study was to determine whether dextromethorphan elicits antidepressant-like effects and the involvement of σ1 receptors in mediating its antidepressant-like actions. The antidepressant-like effects of dextromethorphan were assessed in male, Swiss Webster mice using the forced swim test. Next, σ1 receptor antagonists (BD1063 and BD1047) were evaluated in conjunction with dextromethorphan to determine the involvement of σ receptors in its antidepressant-like effects. Quinidine, a cytochrome P450 (CYP) 2D6 inhibitor, was also evaluated in conjunction with dextromethorphan to increase the bioavailability of dextromethorphan and reduce exposure to additional metabolites. Finally, saturation binding assays were performed to assess the manner in which dextromethorphan interacts at the σ1 receptor. Our results revealed dextromethorphan displays antidepressant-like effects in the forced swim test that can be attenuated by pretreatment with σ1 receptor antagonists, with BD1063 causing a shift to the right in the dextromethorphan dose response curve. Concomitant administration of quinidine potentiated the antidepressant-like effects of dextromethorphan. Saturation binding assays revealed that a Ki concentration of dextromethorphan reduces both the Kd and the Bmax of [3H](+)-pentazocine binding to σ1 receptors. Taken together, these data suggest that dextromethorphan exerts some of its antidepressant actions through σ1 receptors.

References

[1]  Berton O, Nestler EJ (2006) New approaches to antidepressant drug discovery: beyond monoamines. Nat Rev Neurosci 7: 137–151. doi: 10.1038/nrn1846
[2]  Kessler RC, Berglund P, Demler O, Jin R, Koretz D, et al. (2003) The epidemiology of major depressive disorder: results from the National Comorbidity Survey Replication (NCS-R). JAMA 289: 3095–3105. doi: 10.1001/jama.289.23.3095
[3]  Nestler EJ, Gould E, Manji H, Buncan M, Duman RS, et al. (2002) Preclinical models: status of basic research in depression. Biol Psychiatry 52: 503–528. doi: 10.1016/s0006-3223(02)01405-1
[4]  Frazer A, Benmansour S (2002) Delayed pharmacological effects of antidepressants. Mol Psychiatry 7 Suppl 1S23–28. doi: 10.1038/sj.mp.4001015
[5]  Lauterbach EC (2012) An extension of hypotheses regarding rapid-acting, treatment-refractory, and conventional antidepressant activity of dextromethorphan and dextrorphan. Med Hypotheses 78: 693–702. doi: 10.1016/j.mehy.2012.02.012
[6]  Zarate CA Jr, Singh JB, Carlson PJ, Brutsche NE, Ameli R, et al. (2006) A randomized trial of an N-methyl-D-aspartate antagonist in treatment-resistant major depression. Arch Gen Psychiatry 63: 856–864. doi: 10.1001/archpsyc.63.8.856
[7]  Berman RM, Cappiello A, Anand A, Oren DA, Heninger GR, et al. (2000) Antidepressant effects of ketamine in depressed patients. Biol Psychiatry 47: 351–354. doi: 10.1016/s0006-3223(99)00230-9
[8]  Price RB, Nock MK, Charney DS, Mathew SJ (2009) Effects of intravenous ketamine on explicit and implicit measures of suicidality in treatment-resistant depression. Biol Psychiatry 66: 522–526. doi: 10.1016/j.biopsych.2009.04.029
[9]  Werling LL, Keller A, Frank JG, Nuwayhid SJ (2007) A comparison of the binding profiles of dextromethorphan, memantine, fluoxetine and amitriptyline: treatment of involuntary emotional expression disorder. Exp Neurol 207: 248–257. doi: 10.1016/j.expneurol.2007.06.013
[10]  Fishback JA, Robson MJ, Xu YT, Matsumoto RR (2010) Sigma receptors: potential targets for a new class of antidepressant drug. Pharmacol Ther 127: 271–282. doi: 10.1016/j.pharmthera.2010.04.003
[11]  Schmid B, Bircher J, Preisig R, Kupfer A (1985) Polymorphic dextromethorphan metabolism: co-segregation of oxidative O-demethylation with debrisoquin hydroxylation. Clin Pharmacol Ther 38: 618–624.
[12]  Pope LE, Khalil MH, Berg JE, Stiles M, Yakatan GJ, et al. (2004) Pharmacokinetics of dextromethorphan after single or multiple dosing in combination with quinidine in extensive and poor metabolizers. J Clin Pharmacol 44: 1132–1142. doi: 10.1177/0091270004269521
[13]  Werling LL, Lauterbach EC, Calef U (2007) Dextromethorphan as a potential neuroprotective agent with unique mechanisms of action. Neurologist 13: 272–293. doi: 10.1097/nrl.0b013e3180f60bd8
[14]  Hayashi T, Su TP (2007) Sigma-1 receptor chaperones at the ER-mitochondrion interface regulate Ca(2+) signaling and cell survival. Cell 131: 596–610. doi: 10.1016/j.cell.2007.08.036
[15]  Su TP, Hayashi T, Maurice T, Buch S, Ruoho AE (2010) The sigma-1 receptor chaperone as an inter-organelle signaling modulator. Trends Pharmacol Sci 31: 557–566. doi: 10.1016/j.tips.2010.08.007
[16]  Sabino V, Cottone P, Parylak SL, Steardo L, Zorrilla EP (2009) Sigma-1 receptor knockout mice display a depressive-like phenotype. Behav Brain Res 198: 472–476. doi: 10.1016/j.bbr.2008.11.036
[17]  Matsuno K, Kobayashi T, Tanaka MK, Mita S (1996) Sigma 1 receptor subtype is involved in the relief of behavioral despair in the mouse forced swimming test. Eur J Pharmacol 312: 267–271. doi: 10.1016/0014-2999(96)00497-9
[18]  Ukai M, Maeda H, Nanya Y, Kameyama T, Matsuno K (1998) Beneficial effects of acute and repeated administrations of sigma receptor agonists on behavioral despair in mice exposed to tail suspension. Pharmacol Biochem Behav 61: 247–252. doi: 10.1016/s0091-3057(98)00093-8
[19]  Skuza G (2003) Potential antidepressant activity of sigma ligands. Pol J Pharmacol 55: 923–934.
[20]  Skuza G, Rogoz Z (2002) A potential antidepressant activity of SA4503, a selective sigma 1 receptor agonist. Behav Pharmacol 13: 537–543. doi: 10.1097/00008877-200211000-00003
[21]  Wang J, Mack AL, Coop A, Matsumoto RR (2007) Novel sigma (sigma) receptor agonists produce antidepressant-like effects in mice. Eur Neuropsychopharmacol 17: 708–716. doi: 10.1016/j.euroneuro.2007.02.007
[22]  Volz HP, Stoll KD (2004) Clinical trials with sigma ligands. Pharmacopsychiatry 37 Suppl 3S214–220. doi: 10.1055/s-2004-832680
[23]  Hayashi T, Su TP (2008) An update on the development of drugs for neuropsychiatric disorders: focusing on the sigma 1 receptor ligand. Expert Opin Ther Targets 12: 45–58. doi: 10.1517/14728222.12.1.45
[24]  Bermack JE, Debonnel G (2001) Modulation of serotonergic neurotransmission by short- and long-term treatments with sigma ligands. Br J Pharmacol 134: 691–699. doi: 10.1038/sj.bjp.0704294
[25]  Lucas G, Rymar VV, Sadikot AF, Debonnel G (2008) Further evidence for an antidepressant potential of the selective sigma1 agonist SA 4503: electrophysiological, morphological and behavioural studies. Int J Neuropsychopharmacol 11: 485–495. doi: 10.1017/s1461145708008547
[26]  Robson MJ, Elliott M, Seminerio MJ, Matsumoto RR (2012) Evaluation of sigma (sigma) receptors in the antidepressant-like effects of ketamine in vitro and in vivo. Eur Neuropsychopharmacol 22: 308–317. doi: 10.1016/j.euroneuro.2011.08.002
[27]  Fishback JA, Rosen A, Bhat R, McCurdy CR, Matsumoto RR (2012) A 96-well filtration method for radioligand binding analysis of sigma receptor ligands. J Pharm Biomed Anal 71: 157–161. doi: 10.1016/j.jpba.2012.07.023
[28]  Chou YC, Liao JF, Chang WY, Lin MF, Chen CF (1999) Binding of dimemorfan to sigma-1 receptor and its anticonvulsant and locomotor effects in mice, compared with dextromethorphan and dextrorphan. Brain Res 821: 516–519. doi: 10.1016/s0006-8993(99)01125-7
[29]  Cryan JF, Holmes A (2005) The ascent of mouse: advances in modelling human depression and anxiety. Nat Rev Drug Discov 4: 775–790. doi: 10.1038/nrd1825
[30]  McArthur R, Borsini F (2006) Animal models of depression in drug discovery: a historical perspective. Pharmacol Biochem Behav 84: 436–452. doi: 10.1016/j.pbb.2006.06.005
[31]  Nguyen EC, McCracken KA, Liu Y, Pouw B, Matsumoto RR (2005) Involvement of sigma (sigma) receptors in the acute actions of methamphetamine: receptor binding and behavioral studies. Neuropharmacology 49: 638–645. doi: 10.1016/j.neuropharm.2005.04.016
[32]  Urani A, Roman FJ, Phan VL, Su TP, Maurice T (2001) The antidepressant-like effect induced by sigma(1)-receptor agonists and neuroactive steroids in mice submitted to the forced swimming test. J Pharmacol Exp Ther 298: 1269–1279.
[33]  Bermack J, Lavoie N, Dryver E, Debonnel G (2002) Effects of sigma ligands on NMDA receptor function in the bulbectomy model of depression: a behavioural study in the rat. Int J Neuropsychopharmacol 5: 53–62. doi: 10.1017/s1461145701002760
[34]  Nam Y, Shin EJ, Yang BK, Bach JH, Jeong JH, et al. (2012) Dextromethorphan-induced psychotoxic behaviors cause sexual dysfunction in male mice via stimulation of sigma-1 receptors. Neurochem Int 61: 913–922. doi: 10.1016/j.neuint.2012.01.025
[35]  Wu Z, Bowen WD (2008) Role of sigma-1 receptor C-terminal segment in inositol 1,4,5-trisphosphate receptor activation: constitutive enhancement of calcium signaling in MCF-7 tumor cells. J Biol Chem 283: 28198–28215. doi: 10.1074/jbc.m802099200
[36]  Yamamoto H, Miura R, Yamamoto T, Shinohara K, Watanabe M, et al. (1999) Amino acid residues in the transmembrane domain of the type 1 sigma receptor critical for ligand binding. FEBS Lett 445: 19–22. doi: 10.1016/s0014-5793(99)00084-8
[37]  Cobos EJ, Baeyens JM, Del Pozo E (2005) Phenytoin differentially modulates the affinity of agonist and antagonist ligands for sigma 1 receptors of guinea pig brain. Synapse 55: 192–195. doi: 10.1002/syn.20103
[38]  Codd EE, Shank RP, Schupsky JJ, Raffa RB (1995) Serotonin and norepinephrine uptake inhibiting activity of centrally acting analgesics: structural determinants and role in antinociception. J Pharmacol Exp Ther 274: 1263–1270.
[39]  Cryan JF, Markou A, Lucki I (2002) Assessing antidepressant activity in rodents: recent developments and future needs. Trends Pharmacol Sci 23: 238–245. doi: 10.1016/s0165-6147(02)02017-5
[40]  Owens MJ, Morgan WN, Plott SJ, Nemeroff CB (1997) Neurotransmitter receptor and transporter binding profile of antidepressants and their metabolites. J Pharmacol Exp Ther 283: 1305–1322.
[41]  Bymaster FP, Katner JS, Nelson DL, Hemrick-Luecke SK, Threlkeld PG, et al. (2002) Atomoxetine increases extracellular levels of norepinephrine and dopamine in prefrontal cortex of rat: a potential mechanism for efficacy in attention deficit/hyperactivity disorder. Neuropsychopharmacology 27: 699–711. doi: 10.1016/s0893-133x(02)00346-9
[42]  Runyon SP, Savage JE, Taroua M, Roth BL, Glennon RA, et al. (2001) Influence of chain length and N-alkylation on the selective serotonin receptor ligand 9-(aminomethyl)-9,10-dihydroanthracene. Bioorg Med Chem Lett 11: 655–658. doi: 10.1016/s0960-894x(01)00023-3
[43]  Tatsumi M, Groshan K, Blakely RD, Richelson E (1997) Pharmacological profile of antidepressants and related compounds at human monoamine transporters. Eur J Pharmacol 340: 249–258. doi: 10.1016/s0014-2999(97)01393-9
[44]  Narita N, Hashimoto K, Tomitaka S, Minabe Y (1996) Interactions of selective serotonin reuptake inhibitors with subtypes of sigma receptors in rat brain. Eur J Pharmacol 307: 117–119. doi: 10.1016/0014-2999(96)00254-3
[45]  Andersen PH (1989) The dopamine inhibitor GBR 12909: selectivity and molecular mechanism of action. Eur J Pharmacol 166: 493–504. doi: 10.1016/0014-2999(89)90363-4
[46]  Cusack B, Nelson A, Richelson E (1994) Binding of antidepressants to human brain receptors: focus on newer generation compounds. Psychopharmacology (Berl) 114: 559–565. doi: 10.1007/bf02244985
[47]  Stanton T, Bolden-Watson C, Cusack B, Richelson E (1993) Antagonism of the five cloned human muscarinic cholinergic receptors expressed in CHO-K1 cells by antidepressants and antihistaminics. Biochem Pharmacol 45: 2352–2354. doi: 10.1016/0006-2952(93)90211-e
[48]  Wong DT, Threlkeld PG, Best KL, Bymaster FP (1982) A new inhibitor of norepinephrine uptake devoid of affinity for receptors in rat brain. J Pharmacol Exp Ther 222: 61–65.
[49]  Tran VT, Chang RS, Snyder SH (1978) Histamine H1 receptors identified in mammalian brain membranes with [3H]mepyramine. Proc Natl Acad Sci U S A 75: 6290–6294. doi: 10.1073/pnas.75.12.6290

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133