全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2014 

Autaptic Connections and Synaptic Depression Constrain and Promote Gamma Oscillations

DOI: 10.1371/journal.pone.0089995

Full-Text   Cite this paper   Add to My Lib

Abstract:

Computational models of gamma oscillations have helped increase our understanding of the mechanisms that shape these 40–80 Hz cortical rhythms. Evidence suggests that interneurons known as basket cells are responsible for the generation of gamma oscillations. However, current models of gamma oscillations lack the dynamic short term synaptic plasticity seen at basket cell-basket cell synapses as well as the large autaptic synapses basket cells are known to express. Hence, I sought to extend the Wang-Buzsáki model of gamma oscillations to include these features. I found that autapses increased the synchrony of basket cell membrane potentials across the network during neocortical gamma oscillations as well as allowed the network to oscillate over a broader range of depolarizing drive. I also found that including realistic synaptic depression filtered the output of the network. Depression restricted the network to oscillate in the 60–80 Hz range rather than the 40–120 Hz range seen in the standard model. This work shows the importance of including accurate synapses in any future model of gamma oscillations.

References

[1]  Buzsáki G, Draguhn A (2004) Neuronal oscillations in cortical networks. Science 304: 1926–1929. doi: 10.1126/science.1099745
[2]  Joliot M, Ribary U, Llinas R (1994) Human oscillatory brain activity near 40 Hz coexists with cognitive temporal binding. Proc Natl Acad Sci U S A 91: 11748–11751. doi: 10.1073/pnas.91.24.11748
[3]  McBain CJ, Fisahn A (2001) Interneurons unbound. Nat Rev Neurosci 2: 11–23. doi: 10.1038/35049047
[4]  Salinas E, Sejnowski TJ (2001) Correlated neuronal activity and the flow of neural information. Nat Rev Neurosci 2: 539–550. doi: 10.1038/35086012
[5]  Singer W (1999) Neuronal synchrony: a versatile code for the definition of relations? Neuron 24: : 49–65, 111–125.
[6]  Hajos N, Palhalmi J, Mann EO, Nemeth B, Paulsen O, et al. (2004) Spike timing of distinct types of GABAergic interneuron during hippocampal gamma oscillations in vitro. J Neurosci 24: 9127–9137. doi: 10.1523/jneurosci.2113-04.2004
[7]  Cardin JA, Carlen M, Meletis K, Knoblich U, Zhang F, et al. (2009) Driving fast-spiking cells induces gamma rhythm and controls sensory responses. Nature 459: 663–667. doi: 10.1038/nature08002
[8]  Bartos M, Vida I, Jonas P (2007) Synaptic mechanisms of synchronized gamma oscillations in inhibitory interneuron networks. Nat Rev Neurosci 8: 45–56. doi: 10.1038/nrn2044
[9]  Wang XJ, Buzsáki G (1996) Gamma oscillation by synaptic inhibition in a hippocampal interneuronal network model. J Neurosci 16: 6402–6413.
[10]  Bartos M, Vida I, Frotscher M, Meyer A, Monyer H, et al. (2002) Fast synaptic inhibition promotes synchronized gamma oscillations in hippocampal interneuron networks. Proc Natl Acad Sci U S A 99: 13222–13227. doi: 10.1073/pnas.192233099
[11]  Tiesinga P, Sejnowski TJ (2009) Cortical enlightenment: are attentional gamma oscillations driven by ING or PING? Neuron 63: 727–732. doi: 10.1016/j.neuron.2009.09.009
[12]  Bagnall MW, Hull C, Bushong EA, Ellisman MH, Scanziani M (2011) Multiple clusters of release sites formed by individual thalamic afferents onto cortical interneurons ensure reliable transmission. Neuron 71: 180–194. doi: 10.1016/j.neuron.2011.05.032
[13]  Gabernet L, Jadhav SP, Feldman DE, Carandini M, Scanziani M (2005) Somatosensory integration controlled by dynamic thalamocortical feed-forward inhibition. Neuron 48: 315–327. doi: 10.1016/j.neuron.2005.09.022
[14]  Bacci A, Huguenard JR, Prince DA (2003) Functional autaptic neurotransmission in fast-spiking interneurons: a novel form of feedback inhibition in the neocortex. J Neurosci 23: 859–866.
[15]  Connelly WM, Lees G (2010) Modulation and function of the autaptic connections of layer V fast spiking interneurons in the rat neocortex. J Physiol 588: 2047–2063. doi: 10.1113/jphysiol.2009.185199
[16]  Galarreta M, Hestrin S (1998) Frequency-dependent synaptic depression and the balance of excitation and inhibition in the neocortex. Nat Neurosci 1: 587–594. doi: 10.1038/2882
[17]  Galarreta M, Hestrin S (2002) Electrical and chemical synapses among parvalbumin fast-spiking GABAergic interneurons in adult mouse neocortex. Proceedings of the National Academy of Sciences of the United States of America 99: 12438–12443. doi: 10.1073/pnas.192159599
[18]  Gibson JR, Beierlein M, Connors BW (1999) Two networks of electrically coupled inhibitory neurons in neocortex. Nature 402: 75–79. doi: 10.1038/47035
[19]  Holmgren C, Harkany T, Svennenfors B, Zilberter Y (2003) Pyramidal cell communication within local networks in layer 2/3 of rat neocortex. The Journal of physiology 551: 139–153. doi: 10.1113/jphysiol.2003.044784
[20]  Xiang Z, Huguenard JR, Prince DA (2002) Synaptic inhibition of pyramidal cells evoked by different interneuronal subtypes in layer v of rat visual cortex. Journal of neurophysiology 88: 740–750.
[21]  Bacci A, Huguenard JR (2006) Enhancement of spike-timing precision by autaptic transmission in neocortical inhibitory interneurons. Neuron 49: 119–130. doi: 10.1016/j.neuron.2005.12.014
[22]  Carnevale NT, Hines ML (2006) The NEURON Book. Cambridge, UK: Cambridge University Press.
[23]  Bush P, Sejnowski T (1996) Inhibition synchronizes sparsely connected cortical neurons within and between columns in realistic network models. J Comput Neurosci 3: 91–110. doi: 10.1007/bf00160806
[24]  Kisvarday ZF, Beaulieu C, Eysel UT (1993) Network of GABAergic large basket cells in cat visual cortex (area 18): implication for lateral disinhibition. J Comp Neurol 327: 398–415. doi: 10.1002/cne.903270307
[25]  Galarreta M, Hestrin S (1999) A network of fast-spiking cells in the neocortex connected by electrical synapses. Nature 402: 72–75. doi: 10.1038/47029
[26]  Amitai Y, Gibson JR, Beierlein M, Patrick SL, Ho AM, et al. (2002) The spatial dimensions of electrically coupled networks of interneurons in the neocortex. J Neurosci 22: 4142–4152.
[27]  Fukuda T, Kosaka T (2003) Ultrastructural study of gap junctions between dendrites of parvalbumin-containing GABAergic neurons in various neocortical areas of the adult rat. Neuroscience 120: 5–20. doi: 10.1016/s0306-4522(03)00328-2
[28]  Golomb D, Shedmi A, Curtu R, Ermentrout GB (2006) Persistent synchronized bursting activity in cortical tissues with low magnesium concentration: a modeling study. J Neurophysiol 95: 1049–1067. doi: 10.1152/jn.00932.2005
[29]  Tsodyks MV, Markram H (1997) The neural code between neocortical pyramidal neurons depends on neurotransmitter release probability. Proceedings of the National Academy of Sciences of the United States of America 94: 719–723. doi: 10.1073/pnas.94.2.719
[30]  Fuhrmann G, Segev I, Markram H, Tsodyks M (2002) Coding of temporal information by activity-dependent synapses. Journal of neurophysiology 87: 140–148.
[31]  Kraushaar U, Jonas P (2000) Efficacy and stability of quantal GABA release at a hippocampal interneuron-principal neuron synapse. J Neurosci 20: 5594–5607.
[32]  Martina M, Royer S, Pare D (2001) Cell-type-specific GABA responses and chloride homeostasis in the cortex and amygdala. Journal of neurophysiology 86: 2887–2895.
[33]  Vida I, Bartos M, Jonas P (2006) Shunting inhibition improves robustness of gamma oscillations in hippocampal interneuron networks by homogenizing firing rates. Neuron 49: 107–117. doi: 10.1016/j.neuron.2005.11.036
[34]  Tamas G, Somogyi P, Buhl EH (1998) Differentially interconnected networks of GABAergic interneurons in the visual cortex of the cat. J Neurosci 18: 4255–4270.
[35]  Bartos M, Vida I, Frotscher M, Geiger JR, Jonas P (2001) Rapid signaling at inhibitory synapses in a dentate gyrus interneuron network. J Neurosci 21: 2687–2698.
[36]  Melloni L, Molina C, Pena M, Torres D, Singer W, et al. (2007) Synchronization of Neural Activity across Cortical Areas Correlates with Conscious Perception. J Neurosci 27: 2858–2865. doi: 10.1523/jneurosci.4623-06.2007

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133