The cellular response to DNA double strand breaks (DSBs) involves the ordered assembly of repair proteins at or near sites of damage. This process is mediated through post-translational protein modifications that include both phosphorylation and ubiquitylation. Recent data have demonstrated that recruitment of the repair proteins BRCA1, 53BP1, and RAD18 to ionizing irradiation (IR) induced DSBs is dependent on formation of non-canonical K63-linked polyubiquitin chains by the RNF8 and RNF168 ubiquitin ligases. Here we report a novel role for K63-ubiquitylation in response to replication-associated DSBs that contributes to both cell survival and maintenance of genome stability. Suppression of K63-ubiquitylation markedly increases large-scale mutations and chromosomal aberrations in response to endogenous or exogenous replication-associated DSBs. These effects are associated with an S-phase specific defect in DNA repair as revealed by an increase in residual 53BP1 foci. Use of both knockdown and knockout cell lines indicates that unlike the case for IR-induced DSBs, the requirement for K63-ubiquitylation for the repair of replication associated DSBs was found to be RNF8-independent. Our findings reveal the existence of a novel K63-ubiquitylation dependent repair pathway that contributes to the maintenance of genome integrity in response to replication-associated DSBs.
References
[1]
Jeggo PA, Lobrich M (2007) DNA double-strand breaks: their cellular and clinical impact? Oncogene 26: 7717–7719. doi: 10.1038/sj.onc.1210868
[2]
Zhou BB, Elledge SJ (2000) The DNA damage response: putting checkpoints in perspective. Nature 408: 433–439. doi: 10.1038/35044005
[3]
Paull TT, Rogakou EP, Yamazaki V, Kirchgessner CU, Gellert M, et al. (2000) A critical role for histone H2AX in recruitment of repair factors to nuclear foci after DNA damage. Curr Biol 10: 886–895. doi: 10.1016/s0960-9822(00)00610-2
[4]
Bekker-Jensen S, Lukas C, Kitagawa R, Melander F, Kastan MB, et al. (2006) Spatial organization of the mammalian genome surveillance machinery in response to DNA strand breaks. J Cell Biol 173: 195–206. doi: 10.1083/jcb.200510130
[5]
Huen MS, Grant R, Manke I, Minn K, Yu X, et al. (2007) RNF8 transduces the DNA-damage signal via histone ubiquitylation and checkpoint protein assembly. Cell 131: 901–914. doi: 10.1016/j.cell.2007.09.041
[6]
Kolas NK, Chapman JR, Nakada S, Ylanko J, Chahwan R, et al. (2007) Orchestration of the DNA-damage response by the RNF8 ubiquitin ligase. Science 318: 1637–1640. doi: 10.1126/science.1150034
[7]
Mailand N, Bekker-Jensen S, Faustrup H, Melander F, Bartek J, et al. (2007) RNF8 ubiquitylates histones at DNA double-strand breaks and promotes assembly of repair proteins. Cell 131: 887–900. doi: 10.1016/j.cell.2007.09.040
[8]
Wang B, Elledge SJ (2007) Ubc13/Rnf8 ubiquitin ligases control foci formation of the Rap80/Abraxas/Brca1/Brcc36 complex in response to DNA damage. Proc Natl Acad Sci U S A 104: 20759–20763. doi: 10.1073/pnas.0710061104
[9]
Stewart GS, Stankovic T, Byrd PJ, Wechsler T, Miller ES, et al. (2007) RIDDLE immunodeficiency syndrome is linked to defects in 53BP1-mediated DNA damage signaling. Proc Natl Acad Sci U S A 104: 16910–16915. doi: 10.1073/pnas.0708408104
[10]
Stewart GS, Panier S, Townsend K, Al-Hakim AK, Kolas NK, et al. (2009) The RIDDLE syndrome protein mediates a ubiquitin-dependent signaling cascade at sites of DNA damage. Cell 136: 420–434. doi: 10.1016/j.cell.2008.12.042
[11]
Doil C, Mailand N, Bekker-Jensen S, Menard P, Larsen DH, et al. (2009) RNF168 binds and amplifies ubiquitin conjugates on damaged chromosomes to allow accumulation of repair proteins. Cell 136: 435–446. doi: 10.1016/j.cell.2008.12.041
[12]
Huang J, Huen MS, Kim H, Leung CC, Glover JN, et al. (2009) RAD18 transmits DNA damage signalling to elicit homologous recombination repair. Nat Cell Biol 11: 592–603. doi: 10.1038/ncb1865
[13]
Hershko A, Ciechanover A (1998) The ubiquitin system. Annu Rev Biochem 67: 425–479. doi: 10.1146/annurev.biochem.67.1.425
[14]
Haglund K, Dikic I (2005) Ubiquitylation and cell signaling. Embo J 24: 3353–3359. doi: 10.1038/sj.emboj.7600808
[15]
Groth P, Orta ML, Elvers I, Majumder MM, Lagerqvist A, et al.. (2012) Homologous recombination repairs secondary replication induced DNA double-strand breaks after ionizing radiation. Nucleic Acids Res.
[16]
Saleh-Gohari N, Bryant HE, Schultz N, Parker KM, Cassel TN, et al. (2005) Spontaneous homologous recombination is induced by collapsed replication forks that are caused by endogenous DNA single-strand breaks. Mol Cell Biol 25: 7158–7169. doi: 10.1128/mcb.25.16.7158-7169.2005
[17]
Ryan AJ, Squires S, Strutt HL, Johnson RT (1991) Camptothecin cytotoxicity in mammalian cells is associated with the induction of persistent double strand breaks in replicating DNA. Nucleic Acids Res 19: 3295–3300. doi: 10.1093/nar/19.12.3295
[18]
Hsiang YH, Liu LF (1988) Identification of mammalian DNA topoisomerase I as an intracellular target of the anticancer drug camptothecin. Cancer Res 48: 1722–1726.
[19]
Pommier Y, Pourquier P, Fan Y, Strumberg D (1998) Mechanism of action of eukaryotic DNA topoisomerase I and drugs targeted to the enzyme. Biochim Biophys Acta 1400: 83–105. doi: 10.1016/s0167-4781(98)00129-8
[20]
Schreiber V, Dantzer F, Ame JC, de Murcia G (2006) Poly(ADP-ribose): novel functions for an old molecule. Nat Rev Mol Cell Biol 7: 517–528. doi: 10.1038/nrm1963
[21]
Farmer H, McCabe N, Lord CJ, Tutt AN, Johnson DA, et al. (2005) Targeting the DNA repair defect in BRCA mutant cells as a therapeutic strategy. Nature 434: 917–921. doi: 10.1038/nature03445
[22]
Bryant HE, Schultz N, Thomas HD, Parker KM, Flower D, et al. (2005) Specific killing of BRCA2-deficient tumours with inhibitors of poly(ADP-ribose) polymerase. Nature 434: 913–917. doi: 10.1038/nature03443
[23]
Tsirigotis M, Zhang M, Chiu RK, Wouters BG, Gray DA (2001) Sensitivity of mammalian cells expressing mutant ubiquitin to protein-damaging agents. J Biol Chem 276: 46073–46078. doi: 10.1074/jbc.m109023200
Li L, Halaby MJ, Hakem A, Cardoso R, El Ghamrasni S, et al. (2010) Rnf8 deficiency impairs class switch recombination, spermatogenesis, and genomic integrity and predisposes for cancer. J Exp Med 207: 983–997. doi: 10.1084/jem.20092437
[26]
Hoege C, Pfander B, Moldovan GL, Pyrowolakis G, Jentsch S (2002) RAD6-dependent DNA repair is linked to modification of PCNA by ubiquitin and SUMO. Nature 419: 135–141. doi: 10.1038/nature00991
[27]
Li Z, Xiao W, McCormick JJ, Maher VM (2002) Identification of a protein essential for a major pathway used by human cells to avoid UV- induced DNA damage. Proc Natl Acad Sci U S A 99: 4459–4464. doi: 10.1073/pnas.062047799
[28]
Broomfield S, Chow BL, Xiao W (1998) MMS2, encoding a ubiquitin-conjugating-enzyme-like protein, is a member of the yeast error-free postreplication repair pathway. Proc Natl Acad Sci U S A 95: 5678–5683. doi: 10.1073/pnas.95.10.5678
[29]
Brusky J, Zhu Y, Xiao W (2000) UBC13, a DNA-damage-inducible gene, is a member of the error-free postreplication repair pathway in Saccharomyces cerevisiae. Curr Genet 37: 168–174. doi: 10.1007/s002940050515
[30]
Cheng KC, Cahill DS, Kasai H, Nishimura S, Loeb LA (1992) 8-Hydroxyguanine, an abundant form of oxidative DNA damage, causes G----T and A----C substitutions. J Biol Chem 267: 166–172.
[31]
Le Page F, Margot A, Grollman AP, Sarasin A, Gentil A (1995) Mutagenicity of a unique 8-oxoguanine in a human Ha-ras sequence in mammalian cells. Carcinogenesis 16: 2779–2784. doi: 10.1093/carcin/16.11.2779
[32]
Shiomi N, Mori M, Tsuji H, Imai T, Inoue H, et al. (2007) Human RAD18 is involved in S phase-specific single-strand break repair without PCNA monoubiquitination. Nucleic Acids Res 35: e9. doi: 10.1093/nar/gkl979
[33]
Brun J, Chiu RK, Wouters BG, Gray DA (2010) Regulation of PCNA polyubiquitination in human cells. BMC Res Notes 3: 85. doi: 10.1186/1756-0500-3-85
[34]
Lin JR, Zeman MK, Chen JY, Yee MC, Cimprich KA (2011) SHPRH and HLTF act in a damage-specific manner to coordinate different forms of postreplication repair and prevent mutagenesis. Mol Cell 42: 237–249. doi: 10.1016/j.molcel.2011.02.026
[35]
Venkitaraman AR (2004) Tracing the network connecting BRCA and Fanconi anaemia proteins. Nat Rev Cancer 4: 266–276. doi: 10.1038/nrc1321
[36]
Bunting SF, Callen E, Wong N, Chen HT, Polato F, et al. (2010) 53BP1 inhibits homologous recombination in Brca1-deficient cells by blocking resection of DNA breaks. Cell 141: 243–254. doi: 10.1016/j.cell.2010.03.012
[37]
Arnaudeau C, Lundin C, Helleday T (2001) DNA double-strand breaks associated with replication forks are predominantly repaired by homologous recombination involving an exchange mechanism in mammalian cells. J Mol Biol 307: 1235–1245. doi: 10.1006/jmbi.2001.4564
[38]
Bryant HE, Helleday T (2006) Inhibition of poly (ADP-ribose) polymerase activates ATM which is required for subsequent homologous recombination repair. Nucleic Acids Res 34: 1685–1691. doi: 10.1093/nar/gkl108
[39]
Sartori AA, Lukas C, Coates J, Mistrik M, Fu S, et al. (2007) Human CtIP promotes DNA end resection. Nature 450: 509–514. doi: 10.1038/nature06337
[40]
Sonoda E, Hochegger H, Saberi A, Taniguchi Y, Takeda S (2006) Differential usage of non-homologous end-joining and homologous recombination in double strand break repair. DNA Repair (Amst) 5: 1021–1029. doi: 10.1016/j.dnarep.2006.05.022
[41]
VanDemark AP, Hofmann RM, Tsui C, Pickart CM, Wolberger C (2001) Molecular insights into polyubiquitin chain assembly: crystal structure of the Mms2/Ubc13 heterodimer. Cell 105: 711–720. doi: 10.1016/s0092-8674(01)00387-7
[42]
Ulrich HD, Jentsch S (2000) Two RING finger proteins mediate cooperation between ubiquitin-conjugating enzymes in DNA repair. Embo J 19: 3388–3397. doi: 10.1093/emboj/19.13.3388
[43]
Kato TA, Nagasawa H, Weil MM, Little JB, Bedford JS (2006) Levels of gamma-H2AX Foci after low-dose-rate irradiation reveal a DNA DSB rejoining defect in cells from human ATM heterozygotes in two at families and in another apparently normal individual. Radiat Res 166: 443–453. doi: 10.1667/rr3604.1
[44]
Banath JP, Klokov D, MacPhail SH, Banuelos CA, Olive PL (2010) Residual gammaH2AX foci as an indication of lethal DNA lesions. BMC Cancer 10: 4. doi: 10.1186/1471-2407-10-4
[45]
Saberi A, Hochegger H, Szuts D, Lan L, Yasui A, et al. (2007) RAD18 and poly(ADP-ribose) polymerase independently suppress the access of nonhomologous end joining to double-strand breaks and facilitate homologous recombination-mediated repair. Mol Cell Biol 27: 2562–2571. doi: 10.1128/mcb.01243-06
[46]
Shrivastav M, De Haro LP, Nickoloff JA (2008) Regulation of DNA double-strand break repair pathway choice. Cell Res 18: 134–147. doi: 10.1038/cr.2007.111
[47]
Pierce AJ, Hu P, Han M, Ellis N, Jasin M (2001) Ku DNA end-binding protein modulates homologous repair of double-strand breaks in mammalian cells. Genes Dev 15: 3237–3242. doi: 10.1101/gad.946401
[48]
Shao G, Lilli DR, Patterson-Fortin J, Coleman KA, Morrissey DE, et al. (2009) The Rap80-BRCC36 de-ubiquitinating enzyme complex antagonizes RNF8-Ubc13-dependent ubiquitination events at DNA double strand breaks. Proc Natl Acad Sci U S A 106: 3166–3171. doi: 10.1073/pnas.0807485106
[49]
Yan J, Kim YS, Yang XP, Li LP, Liao G, et al. (2007) The ubiquitin-interacting motif containing protein RAP80 interacts with BRCA1 and functions in DNA damage repair response. Cancer Res 67: 6647–6656. doi: 10.1158/0008-5472.can-07-0924
[50]
Kraakman-van der Zwet M, Overkamp WJ, van Lange RE, Essers J, van Duijn-Goedhart A, et al. (2002) Brca2 (XRCC11) deficiency results in radioresistant DNA synthesis and a higher frequency of spontaneous deletions. Mol Cell Biol 22: 669–679. doi: 10.1128/mcb.22.2.669-679.2002
[51]
Lobrich M, Kuhne M, Wetzel J, Rothkamm K (2000) Joining of correct and incorrect DNA double-strand break ends in normal human and ataxia telangiectasia fibroblasts. Genes Chromosomes Cancer 27: 59–68. doi: 10.1002/(sici)1098-2264(200001)27:1<59::aid-gcc8>3.3.co;2-0
[52]
Andreassen PR, Ho GP, D'Andrea AD (2006) DNA damage responses and their many interactions with the replication fork. Carcinogenesis 27: 883–892. doi: 10.1093/carcin/bgi319
[53]
Sonoda E, Sasaki MS, Buerstedde JM, Bezzubova O, Shinohara A, et al. (1998) Rad51-deficient vertebrate cells accumulate chromosomal breaks prior to cell death. Embo J 17: 598–608. doi: 10.1093/emboj/17.2.598
[54]
Rothkamm K, Kruger I, Thompson LH, Lobrich M (2003) Pathways of DNA double-strand break repair during the mammalian cell cycle. Mol Cell Biol 23: 5706–5715. doi: 10.1128/mcb.23.16.5706-5715.2003
[55]
Greenberg RA, Sobhian B, Pathania S, Cantor SB, Nakatani Y, et al. (2006) Multifactorial contributions to an acute DNA damage response by BRCA1/BARD1-containing complexes. Genes Dev 20: 34–46. doi: 10.1101/gad.1381306
[56]
Polanowska J, Martin JS, Garcia-Muse T, Petalcorin MI, Boulton SJ (2006) A conserved pathway to activate BRCA1-dependent ubiquitylation at DNA damage sites. Embo J 25: 2178–2188. doi: 10.1038/sj.emboj.7601102