全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2014 

Serotonin, Dopamine and Noradrenaline Adjust Actions of Myelinated Afferents via Modulation of Presynaptic Inhibition in the Mouse Spinal Cord

DOI: 10.1371/journal.pone.0089999

Full-Text   Cite this paper   Add to My Lib

Abstract:

Gain control of primary afferent neurotransmission at their intraspinal terminals occurs by several mechanisms including primary afferent depolarization (PAD). PAD produces presynaptic inhibition via a reduction in transmitter release. While it is known that descending monoaminergic pathways complexly regulate sensory processing, the extent these actions include modulation of afferent-evoked PAD remains uncertain. We investigated the effects of serotonin (5HT), dopamine (DA) and noradrenaline (NA) on afferent transmission and PAD. Responses were evoked by stimulation of myelinated hindlimb cutaneous and muscle afferents in the isolated neonatal mouse spinal cord. Monosynaptic responses were examined in the deep dorsal horn either as population excitatory synaptic responses (recorded as extracellular field potentials; EFPs) or intracellular excitatory postsynaptic currents (EPSCs). The magnitude of PAD generated intraspinally was estimated from electrotonically back-propagating dorsal root potentials (DRPs) recorded on lumbar dorsal roots. 5HT depressed the DRP by 76%. Monosynaptic actions were similarly depressed by 5HT (EFPs 54%; EPSCs 75%) but with a slower time course. This suggests that depression of monosynaptic EFPs and DRPs occurs by independent mechanisms. DA and NA had similar depressant actions on DRPs but weaker effects on EFPs. IC50 values for DRP depression were 0.6, 0.8 and 1.0 μM for 5HT, DA and NA, respectively. Depression of DRPs by monoamines was nearly-identical in both muscle and cutaneous afferent-evoked responses, supporting a global modulation of the multimodal afferents stimulated. 5HT, DA and NA produced no change in the compound antidromic potentials evoked by intraspinal microstimulation indicating that depression of the DRP is unrelated to direct changes in the excitability of intraspinal afferent fibers, but due to metabotropic receptor activation. In summary, both myelinated afferent-evoked DRPs and monosynaptic transmission in the dorsal horn are broadly reduced by descending monoamine transmitters. These actions likely integrate with modulatory actions elsewhere to reconfigure spinal circuits during motor behaviors.

References

[1]  Jankowska E, Hammar I, Chojnicka B, Heden CH (2000) Effects of monoamines on interneurons in four spinal reflex pathways from group I and/or group II muscle afferents. European Journal of Neuroscience 12: 701–714. doi: 10.1046/j.1460-9568.2000.00955.x
[2]  Garraway SM, Hochman S (2001) Modulatory actions of serotonin, norepinephrine, dopamine, and acetylcholine in spinal cord deep dorsal horn neurons. JNeurophysiol 86: 2183–2194.
[3]  Hochman S, Garraway SM, Machacek DW, Shay BL (2001) 5-HT receptors and the neuromodulatory control of spinal cord function. In: Motor Neurobiology of the Spinal Cord. CRC Press, Boca Raton T.C. Cope. (ed)., p47–87.
[4]  Millan MJ (2002) Descending control of pain. Progress in Neurobiology 66: 355–474. doi: 10.1016/s0301-0082(02)00009-6
[5]  Zimmerman AL, Sawchuk M, Hochman S (2012) (2012) Monoaminergic modulation of spinal viscero-sympathetic function in the neonatal mouse thoracic spinal cord. PLoS One 7(11): e47213 doi: 10.1371/journal.pone.0047213.
[6]  Rudomin P, Schmidt RF (1999) Presynaptic inhibition in the vertebrate spinal cord revisited. Experimental Brain Research 129: 1–37. doi: 10.1007/s002210050933
[7]  Oksamitnyi VN, Tamarova ZA (1987) [Depolarizing action of dopamine on the endings of the primary afferent fibers of an isolated segment of the spinal cord in rat pups]. Neirofiziologiia 19: 741–748. doi: 10.1007/bf01056918
[8]  Khasabov SG, Lopez-Garcia JA, Asghar AU, King AE (1999) Modulation of afferent-evoked neurotransmission by 5-HT3 receptors in young rat dorsal horn neurones in vitro: a putative mechanism of 5-HT3 induced anti-nociception. British Journal of Pharmacology 127: 843–852. doi: 10.1038/sj.bjp.0702592
[9]  Willis WD Jr (1999) Dorsal root potentials and dorsal root reflexes: a double-edged sword. Experimental Brain Research 124: 395–421. doi: 10.1007/s002210050637
[10]  Proudfit HK, Anderson EG (1974) New long latency bulbospinal evoked potentials blocked by serotonin antagonists. Brain Res 65: 542–546. doi: 10.1016/0006-8993(74)90246-7
[11]  Preston PR, Wallis DI (1980) The pharmacology of dorsal root potentials recorded from the isolated spinal cord of the neonate rat. GenPharmacol 11: 527–534. doi: 10.1016/0306-3623(80)90085-3
[12]  Riddell JS, Jankowska E, Eide E (1993) Depolarization of group II muscle afferents by stimuli applied in the locus coeruleus and raphe nuclei of the cat. Journal of Physiology 461: 723–741.
[13]  Quevedo J, Eguibar JR, Jiménez I, Rudomin P (1995) Raphe magnus and reticulospinal actions on primary afferent depolarization of group I muscle afferents in the cat. Journal of Physiology 482: 623–640.
[14]  Engberg I, Ryall RW (1966) The inhibitory action of noradrenaline and other monoamines on spinal neurones. JPhysiol 185: 298–322.
[15]  Headley PM, Duggan AW, Griersmith BT (1978) Selective reduction by noradrenaline and 5-hydroxytryptamine of nociceptive responses of cat dorsal horn neurones. Brain Research 145: 185–189. doi: 10.1016/0006-8993(78)90809-0
[16]  Fleetwood-Walker SM, Mitchell R, Hope PJ, Molony V, Iggo A (1985) An alpha 2 receptor mediates the selective inhibition by noradrenaline of nociceptive responses of identified dorsal horn neurones. Brain Research 334: 243–254. doi: 10.1016/0006-8993(85)90216-1
[17]  Proudfit HK, Larson AA, Anderson EG (1980) The role of GABA and serotonin in the mediation of raphe-evoked spinal cord dorsal root potentials. Brain Res 195: 149–165. doi: 10.1016/0006-8993(80)90873-2
[18]  Curtis DR, Leah JD, Peet MJ (1983) Effects of noradrenaline and 5-hydroxytryptamine on spinal Ia afferent terminations. Brain Res 258: 328–332. doi: 10.1016/0006-8993(83)91160-5
[19]  Jankowska E, Hammar I, Djouhri L, Heden C, Szabo LZ, et al. (1997) Modulation of responses of four types of feline ascending tract neurons by serotonin and noradrenaline. European Journal of Neuroscience 9: 1375–1387. doi: 10.1111/j.1460-9568.1997.tb01492.x
[20]  McLennan H (1961) The effect of some catecholamines upon a monosynaptic reflex pathway in the spinal cord. JPhysiol 158: 411–425.
[21]  Carp JS, Anderson RJ (1982) Dopamine receptor-mediated depression of spinal monosynaptic transmission. Brain Research 242: 247–254. doi: 10.1016/0006-8993(82)90307-9
[22]  Crick H, Wallis DI (1991) Inhibition of reflex responses of neonate rat lumbar spinal cord by 5-hydroxytryptamine. British Journal of Pharmacology 103: 1769–1775. doi: 10.1111/j.1476-5381.1991.tb09861.x
[23]  Clemens S, Hochman S (2004) Conversion of the modulatory actions of dopamine on spinal reflexes from depression to facilitation in D3 receptor knock-out mice. Journal of Neuroscience 24: 11337–11345. doi: 10.1523/jneurosci.3698-04.2004
[24]  Bras H, Cavallari P, Jankowska E, McCrea D (1989) Comparison of effects of monoamines on transmission in spinal pathways from group I and II muscle afferents in the cat. Experimental Brain Research 76: 27–37. doi: 10.1007/bf00253620
[25]  Bras H, Jankowska E, Noga BR, Skoog B (1990) Comparison of effects of various types of NA and 5-HT agonists on transmission from group II muscle afferents in the cat. European Journal of Neuroscience 12: 1029–1039. doi: 10.1111/j.1460-9568.1990.tb00015.x
[26]  Skoog B, Noga BR (1995) Dopaminergic control of transmission from group II muscle afferents to spinal neurones in the cat and guinea-pig. Experimental Brain Research 105: 39–47. doi: 10.1007/bf00242180
[27]  Dougherty KJ, Bannatyne BA, Jankowska E, Krutki P, Maxwell DJ (2005) Membrane receptors involved in modulation of responses of spinal dorsal horn interneurons evoked by feline group II muscle afferents. J Neurosci 25: 584–593. doi: 10.1523/jneurosci.3797-04.2005
[28]  Hochman S, Gozal EA, Hayes HB, Anderson JT, DeWeerth SP, et al. (2012) Enabling techniques for in vitro studies on mammalian spinal locomotor mechanisms. Front Biosci 17: 2158–80. doi: 10.2741/4043
[29]  Calvo JR, Hernández-Rodríguez M, Hochman S, Quevedo JN (2006) Monoaminergic modulation of pathways mediating sensory-evoked pad in the hemisected spinal cord of the mouse. Soc Neurosci Abst 146..
[30]  Calvo JR, Hochman S, Quevedo J (2008) Modulation of sensory-evoked field potentials by monoamines in the hemisect spinal cord of the mouse. Soc Neurosci Abst 575..
[31]  Vejsada R, Palecek J, Hnik P, Soukup T (1985) Postnatal development of conduction velocity and fibre size in the rat tibial nerve. International Journal of Developmental Neuroscience 3: 583–589. doi: 10.1016/0736-5748(85)90048-6
[32]  Nussbaumer JC, Yanagisawa M, Otsuka M (1989) Pharmacological properties of a C-fibre response evoked by saphenous nerve stimulation in an isolated spinal cord-nerve preparation of the newborn rat. British journal of pharmacology 98: 373–382. doi: 10.1111/j.1476-5381.1989.tb12607.x
[33]  Lev-Tov A, Pinco M (1992) In vitro studies of prolonged synaptic depression in the neonatal rat spinal cord. Journal of Physiology 447: 149–169.
[34]  Shreckengost J, Calvo J, Quevedo J, Hochman S (2010) Bicuculline-sensitive primary afferent depolarization remains after greatly restricting synaptic transmission in the mammalian spinal cord. J Neurosci 30: 5283–8. doi: 10.1523/jneurosci.3873-09.2010
[35]  Wall PD (1958) Excitability changes in afferent fibre terminations and their relation to slow potentials. J Physiol 142: 1–21.
[36]  Sypert GW, Munson JB, Fleshman JW (1980) Effect of presynaptic inhibition on axonal potentials, terminal potentials, focal synaptic potentials, and EPSPs in cat spinal cord. JNeurophysiol 44: 792–803.
[37]  Rossignol S, Dubuc R, Gossard JP (2006) Dynamic sensorimotor interactions in locomotion. Physiol Rev 86: 89–154. doi: 10.1152/physrev.00028.2005
[38]  Miller BA, Woolf CJ (1996) Glutamate-mediated slow synaptic currents in neonatal rat deep dorsal hom neurons in vitro. Journal of Neurophysiology 76: 1465–1476.
[39]  Eccles JC, Magni F, Willis WD (1962) Depolarization of central terminals of Group I afferent fibres from muscle. JPhysiol 160: 62–93.
[40]  Conte D, Legg ED, McCourt AC, Silajdzic E, Nagy GG, et al. (2005) Transmitter content, origins and connections of axons in the spinal cord that possess the serotonin (5-hydroxytryptamine) 3 receptor. Neuroscience 134: 165–173. doi: 10.1016/j.neuroscience.2005.02.013
[41]  Murase K, Randic M, Shirasaki T, Nakagawa T, Akaike N (1990) Serotonin suppresses N -methyl-D-aspartate responses in acutely isolated spinal dorsal horn neurons of the rat. Brain Research 525: 84–91. doi: 10.1016/0006-8993(90)91323-9
[42]  Sonohata M, Furue H, Katafuchi T, Yasaka T, Doi A, et al. (2004) Actions of noradrenaline on substantia gelatinosa neurones in the rat spinal cord revealed by in vivo patch recording. JPhysiol 555: 515–526. doi: 10.1113/jphysiol.2003.054932
[43]  Nicholson R, Dixon AK, Spanswick D, Lee K (2005) Noradrenergic receptor mRNA expression in adult rat superficial dorsal horn and dorsal root ganglion neurons. Neurosci Lett 380: 316–321. doi: 10.1016/j.neulet.2005.01.079
[44]  Tamae A, Nakatsuka T, Koga K, Kato G, Furue H, et al. (2005) Direct inhibition of substantia gelatinosa neurones in the rat spinal cord by activation of dopamine D2-like receptors. JPhysiol 568: 243–253. doi: 10.1113/jphysiol.2005.091843
[45]  el Yassir N, Fleetwood-Walker SM (1990) A 5-HT1-type receptor mediates the antinociceptive effect of nucleus raphe magnus stimulation in the rat. Brain Research 523: 92–99. doi: 10.1016/0006-8993(90)91639-x
[46]  Kittler JT, Moss SJ (2003) Modulation of GABAA receptor activity by phosphorylation and receptor trafficking: implications for the efficacy of synaptic inhibition. Current Opinion in Neurobiology 13: 341–347. doi: 10.1016/s0959-4388(03)00064-3
[47]  Stanford IM, Lacey MG (1996) Differential actions of serotonin, mediated by 5-HT 1B and 5- HT 2C receptors, on GABA-mediated synaptic input to rat substantia nigra pars reticulata neurons in vitro Journal of Neuroscience. 16: 7566–7573.
[48]  Bramley JR, Sollars PJ, Pickard GE, Dudek FE (2005) 5-HT1B receptor-mediated presynaptic inhibition of GABA release in the suprachiasmatic nucleus. JNeurophysiol 93: 3157–3164. doi: 10.1152/jn.00770.2004
[49]  Flores-Hernandez J, Hernandez S, Snyder GL, Yan Z, Fienberg AA, et al. (2000) D(1) dopamine receptor activation reduces GABA(A) receptor currents in neostriatal neurons through a PKA/DARPP-32/PP1 signaling cascade. JNeurophysiol 83: 2996–3004.
[50]  Olave MJ, Maxwell DJ (2002) An investigation of neurones that possess the alpha 2C-adrenergic receptor in the rat dorsal horn. Neuroscience 115: 31–40. doi: 10.1016/s0306-4522(02)00407-4
[51]  Bos R, Sadlaoud K, Boulenguez P, Buttigieg D, Liabeuf S, et al. (2013) Activation of 5-HT2A receptors upregulates the function of the neuronal K-Cl cotransporter KCC2. Proc Natl Acad Sci 110(1): 348–53. doi: 10.1073/pnas.1213680110

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133